ÌâÄ¿ÄÚÈÝ
3£®·ÖÎö Çó³öÇúÏßOCµÄ·½³Ì£¬Éè³öPµã×ø±ê£¬ÓÃPµã×ø±ê±íʾ³ö¾ØÐεÄÃæ»ýº¯Êý£¬Çó³öÃæ»ýº¯ÊýµÄ×î´óÖµ£®
½â´ð ½â£ºÒÔOΪԵ㣬ֱÏßAOΪxÖᣬÇÒÒÔ1 kmΪµ¥Î»³¤¶È½¨Á¢ÈçͼËùʾµÄÆ½ÃæÖ±½Ç×ø±êϵ£¬ÓÚÊÇC£¨2£¬4£©£¬B£¨-2£¬4£©£®
ÉèÇúÏß¶ÎOCËùÔÚÅ×ÎïÏß·½³ÌΪx2=2py£¨p£¾0£©£¬
ÓÚÊÇ22=2p¡Á4£¬µÃ2p=1£®ËùÒÔÇúÏß¶ÎOCËùÔÚÅ×ÎïÏß·½³ÌΪx2=y£®
ÉèP£¨x£¬x2£©£¨0¡Üx£¼2£©£¬ÔòM£¨-2£¬x2£©£¬N£¨x£¬4£©£¬MP=x+2£¬PN=4-x2£¬
¡à¾ØÐÎPMBNµÄÃæ»ýS£¨x£©=MP•PN=£¨x+2£©£¨4-x2£©=-x3-2x2+4x+8£¨0¡Üx£¼2£©£¬
$S'=-3{x^2}-4x+4=-3£¨x+2£©£¨{x-\frac{2}{3}}£©$£¬ÁîS'=0µÃ$x=\frac{2}{3}$»òx=-2£¨Éᣩ£®
µ±$x¡Ê£¨{0£¬\;\;\frac{2}{3}}£©$ʱ£¬S'£¾0£¬¡àº¯ÊýSÔÚ$£¨{0£¬\;\;\frac{2}{3}}£©$ÄÚÊǵ¥µ÷Ôöº¯Êý£»
µ±$x¡Ê£¨{\frac{2}{3}£¬\;\;2}£©$ʱ£¬S'£¼0£¬¡àº¯ÊýSÔÚ$£¨{\frac{2}{3}£¬\;\;2}£©$ÄÚÊǵ¥µ÷¼õº¯Êý£®
¡à$x=\frac{2}{3}$ʱ£¬S£¨x£©È¡µÃ×î´óÖµS£¨$\frac{3}{2}$£©=$\frac{256}{27}$¡Ö9.5£®
¹ÊѡȡPµã¾àAB¾àÀëԼΪ2.7 kmʱ£¬ÄÜʹ¾ØÐÎÔ°ÇøµÄÓõØÃæ»ý×î´ó£¬×î´óÃæ»ýԼΪ9.5 km2£®
µãÆÀ ±¾Ì⿼²éÁ˵¼ÊýÓ뺯ÊýµÄµ¥µ÷ÐÔ£¬º¯Êý×îÖµÖ®¼äµÄ¹ØÏµ£¬Çó³ö¾ØÐεÄÃæ»ýº¯ÊýÊǽâÌâ¹Ø¼ü£®
| A£® | 2 | B£® | 0 | C£® | -1 | D£® | -2 |
| ½¡²½×ß²½Êý£¨Ç§¿¨£© | 16 | 17 | 18 | 19 |
| ÏûºÄÄÜÁ¿£¨¿¨Â·À | 400 | 440 | 480 | 520 |
£¨¢ò£©´Ó²½ÊýΪ16ǧ²½£¬17ǧ²½£¬18ǧ²½µÄ¼¸ÌìÖÐÈÎÑ¡2Ì죬ÉèСÍõÕâ2Ììͨ¹ý½¡²½×ßÏûºÄµÄ¡°ÄÜÁ¿ºÍ¡±ÎªX£¬ÇóXµÄ·Ö²¼ÁУ®
| A£® | £¨-¡Þ£¬0£© | B£® | $£¨{-¡Þ£¬\frac{1}{2a}}£©$ | C£® | $£¨{0£¬\frac{1}{a}}£©$ | D£® | $£¨{\frac{1}{a}£¬+¡Þ}£©$ |