题目内容

10.已知tanα=7,求值.
(1)$\frac{sinα+cosα}{2sinα-cosα}$=$\frac{8}{13}$;
(2)sin2α+sinαcosα+3cos2α=$\frac{59}{50}$.

分析 (1)利用同角三角函数基本关系式,化简为正切函数的形式,代入求解即可.
(2)利用平方关系式,化为正切函数的形式,代入求解即可.

解答 解:(1)∵tanα=7,
∴$\frac{sinα+cosα}{2sinα-cosα}$=$\frac{tanα+1}{2tanα-1}$=$\frac{7+1}{14-1}$=$\frac{8}{13}$.
(2)sin2α+sinαcosα+3cos2α=$\frac{si{n}^{2}α+sinαcosα+3co{s}^{2}α}{si{n}^{2}α+co{s}^{2}α}$=$\frac{ta{n}^{2}α+tanα+3}{ta{n}^{2}α+1}$=$\frac{49+7+3}{49+1}$=$\frac{59}{50}$.
故答案为:$\frac{8}{13}$;$\frac{59}{50}$.

点评 本题考查同角三角函数基本关系式的应用,三角函数化简求值,考查计算能力.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网