题目内容
为了得到函数y=sin(2x+
),x∈R的图象,只需将函数y=sin2x,x∈R图象上所有的点( )
| π |
| 4 |
A、向左平行移动
| ||
B、向右平行移动
| ||
C、向左平行移动
| ||
D、向右平行移动
|
考点:函数y=Asin(ωx+φ)的图象变换
专题:三角函数的图像与性质
分析:由条件根据函数y=Asin(ωx+φ)的图象变换规律,可得结论.
解答:
解:∵y=sin(2x+
)=sin2(x+
),故要得到y=sin(2x+
),x∈R的图象,
只需将函数y=sin2x,x∈R的图象向左平移
个单位长度即可,
故选:A.
| π |
| 4 |
| π |
| 8 |
| π |
| 4 |
只需将函数y=sin2x,x∈R的图象向左平移
| π |
| 8 |
故选:A.
点评:本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.
练习册系列答案
相关题目
已知实数x,y满足
,则不等式2|1-a|-1>a(a-2)成立的概率是( )
|
A、
| ||
B、
| ||
C、
| ||
D、
|
给出下列命题:①a>b⇒ac2>bc2;②a>|b|⇒a2>b2;③a>b⇒a3>b3,其中正确的命题是( )
| A、①② | B、②③ | C、① | D、③ |
已知命题p:?x∈R,2x=5,则¬p为( )
| A、?x∉R,2x=5 |
| B、?x∈R,2x≠5 |
| C、?x0∈R,2 x0=5 |
| D、?x0∈R,2 x0≠5 |
y=
x2-ln(2x-3)的单调递减区间为( )
| 1 |
| 2 |
A、(-∞,-
| ||
| B、(2,+∞) | ||
C、(
| ||
D、(
|