ÌâÄ¿ÄÚÈÝ
9£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1¡¢F2£¬µãPÔÚÍÖÔ²ÉÏ£¬ÇÒ¡÷PF1F2ÊǸßΪ$\sqrt{3}$µÄµÈ±ßÈý½ÇÐΣ¨1£©ÇóÍÖÔ²CµÄ·½³Ì
£¨2£©ÒÑÖª¶¯µãQ£¨m£¬n£©£¨mn¡Ù0£©ÔÚÍÖÔ²CÉÏ£¬µãA£¨0£¬$\sqrt{3}$£©£¬Ö±ÏßAQ½»xÖáÓÚµãM£¬µãQ¡äΪµãQ¹ØÓÚxÖáµÄ¶Ô³Æµã£¬Ö±ÏßAQ¡ä½»xÖáÓÚµãN£¬ÈôÔÚyÖáÉÏ´æÔÚµãK£¨0£¬t£©£¬Ê¹µÃ¡ÏOKM=¡ÏONK£¬ÇóÂú×ãÌõ¼þµÄµãKµÄ×ø±ê£®
·ÖÎö £¨1£©ÓÉÒÑÖªÖС÷PF1F2ÊǸßΪ$\sqrt{3}$µÄµÈ±ßÈý½ÇÐΣ¬Çó³öa£¬bÖµ£¬¿ÉµÃÍÖÔ²CµÄ·½³Ì
£¨2£©ÏÈÇó³öM£¬NÁ½µãµÄºá×ø±ê£¬½ø¶ø¸ù¾Ý¡ÏOKM=¡ÏONK£¬¿ÉµÃ|OK|2=|OM|•|ON|£¬½ø¶ø¿ÉµÃµãKµÄ×ø±ê£®
½â´ð
½â£º£¨1£©¡ß¡÷PF1F2ÊǸßΪ$\sqrt{3}$µÄµÈ±ßÈý½ÇÐΣ¬
¡àa=2c=2£¬b=$\sqrt{3}$£¬
¡àa2=4£¬b2=3£¬
¡àÍÖÔ²CµÄ·½³ÌΪ£º$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1£¬
£¨2£©ÉèM£¨x1£¬0£©£¬N£¨x2£¬0£©£¬
ÓÉQ£¬A£¬MÈýµã¹²Ïߵãº$\frac{-\sqrt{3}}{{x}_{1}}=\frac{n-\sqrt{3}}{m}$£¬
¡àx1=$\frac{-\sqrt{3}m}{n-\sqrt{3}}$£¬
ͬÀíÓÉQ¡ä£¬A£¬NÈýµã¹²Ïߵãºx2=$\frac{\sqrt{3}m}{n+\sqrt{3}}$
Èô¡ÏOKM=¡ÏONK£¬Ôòtan¡ÏOKM=tan¡ÏONK£¬
¡à$\frac{\left|OM\right|}{\left|OK\right|}=\frac{\left|OK\right|}{\left|ON\right|}$£¬¼´|OK|2=|OM|•|ON|£¬
ÓÖ¡ß-$\sqrt{3}$£¼n£¼$\sqrt{3}$£¬ÇÒn¡Ù0£¬
¡àt2=|$\frac{-\sqrt{3}m}{n-\sqrt{3}}$|•|$\frac{\sqrt{3}m}{n+\sqrt{3}}$|=$\frac{3{m}^{2}}{3-{n}^{2}}$£¬
ÓÖ¡ß¶¯µãQÔÚÍÖÔ²CÉÏ£¬
¡à3m2+4n2=12£¬
¡àt2=$\frac{{12-4n}^{2}}{3-{n}^{2}}$=4£¬
½âµÃ£ºt=¡À2£¬
¡àKµÄ×ø±êΪ£¨0£¬-2£©£¬»ò£¨0£¬2£©
µãÆÀ ±¾Ì⿼²éµÄ֪ʶµãÊÇÍÖÔ²µÄ±ê×¼·½³Ì£¬Ö±ÏßÓëÍÖÔ²µÄλÖùØÏµ£¬ÄѶÈÖеµ£®
| A£® | 5+2$\sqrt{2}$ | B£® | 4+2$\sqrt{2}$ | C£® | $\sqrt{7}$ | D£® | 3+2$\sqrt{2}$ |
| A£® | ¼× | B£® | ÒÒ | C£® | ±û | D£® | ¶¡ |
| A£® | $\frac{1}{2}$ | B£® | $-\frac{1}{2}$ | C£® | $\frac{\sqrt{3}}{2}$ | D£® | $-\frac{\sqrt{3}}{2}$ |