题目内容
14.已知函数f(x)=-(x+2)(x-m)(其中m>-2),g(x)=2x-2.(1)命题p:f(x)≥0,命题q:g(x)<0.,若p是q的充分非必要条件,求m的取值范围;
(2)设命题p:?x∈R,f(x)<0或g(x)<0:命题q:?x∈(-1,0).f(x)•g(x)<0,若p∧q是真命题,求m的取值范围.
分析 (1)由f(x)≥0,g(x)<0求解不等式,再由p是q的充分非必要条件可得两不等式解集的关系,由集合端点值间的关系求得m的范围.
(2)由于p∧q是真命题,可得p与q都是真命题.由于当x>1时,g(x)>0,又p是真命题,可得f(x)<0.由f(1)<0,可得m<1.当-1<x<0时,g(x)<0.由于q是真命题,则?x∈(-1,0),使得f(x)>0,利用f(-1)>0,可得m的取值范围.
解答 解:(1)命题p:f(x)≥0,即-(x+2)(x-m)≥0,解得-2≤x≤m,
命题q:g(x)<0,即2x-2<0,解得x<1,
∵p是q的充分非必要条件,
∴m<1,
故m的取值范围为(-∞,1);
(2)∵p∧q是真命题,∴p与q都是真命题.
当x>1时,g(x)=2x-2>0,又p是真命题,则f(x)<0.
f(1)=-(1+2)(1-m)<0,解得m<1.
当-1<x<0时,g(x)=2x-2<0.
∵q是真命题,则?x∈(-1,0),使得f(x)>0,
∴f(-1)=-(-1+2)(-1-m)>0,即m>-1.
综上所述:-1<m<1.
点评 本题综合考查了二次函数和指数函数的单调性、简易逻辑的有关知识,考查了推理能力和计算能力,属于中档题.
练习册系列答案
相关题目
4.把函数f(x)=sin(-3x+$\frac{π}{6}$)的周期扩大为原来的2倍,再将其图象向右平移$\frac{π}{3}$个单位长度,则所得图象的解析式为( )
| A. | y=sin($\frac{π}{6}$-6x) | B. | y=cos6x | C. | y=sin($\frac{2π}{3}$-$\frac{3x}{2}$) | D. | y=sin(-$\frac{π}{6}$-$\frac{3}{2}$x) |
2.
甲、乙两同学在本学期的7次考试中获得的成绩如茎叶图所示,两人各有一次成绩看不清楚,其中m,n∈Z,已知两位同学各自的7次成绩各不相同,但两人7次成绩的平均分相同,则两人7次成绩的中位数恰好也相同的概率为( )
| A. | $\frac{1}{6}$ | B. | $\frac{1}{5}$ | C. | $\frac{1}{4}$ | D. | $\frac{1}{3}$ |