题目内容

10.已知圆C的方程为:x2+y2=9,过圆C上一动点M作平行于y轴的直线m,设m与x轴的交点为N,若向量$\overrightarrow{OQ}=\overrightarrow{OM}+\overrightarrow{ON}$,则动点Q的轨迹方程是$\frac{x^2}{4}+{y^2}=9$.

分析 设Q(x,y),M(s,t),则N(0,t),由于向量$\overrightarrow{OQ}=\overrightarrow{OM}+\overrightarrow{ON}$,利用向量相等可得$\left\{\begin{array}{l}{x=s}\\{y=2t}\end{array}\right.$,解出s,t再代入圆的方程即可.

解答 解:设Q(x,y),M(s,t),则N(0,t),s2+t2=9.(*)
∵向量$\overrightarrow{OQ}=\overrightarrow{OM}+\overrightarrow{ON}$,(O为原点),∴$\left\{\begin{array}{l}{x=s}\\{y=2t}\end{array}\right.$,
解得$\left\{\begin{array}{l}{s=x}\\{t=y}\end{array}\right.$,代入(*)化为$\frac{x^2}{4}+{y^2}=9$.
故答案为$\frac{x^2}{4}+{y^2}=9$.

点评 本题考查了轨迹方程,考查代点法,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网