题目内容

19.双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率为$\frac{{\sqrt{6}}}{2}$,则它的渐近线方程为(  )
A.y=±2xB.y=±$\frac{1}{4}$xC.y=±$\frac{1}{2}$xD.y=±$\frac{{\sqrt{2}}}{2}$x

分析 由双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率为$\frac{{\sqrt{6}}}{2}$,可得c=$\frac{{\sqrt{6}}}{2}$a,求出b,即可求出双曲线的渐近线方程.

解答 解:∵双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的离心率为$\frac{{\sqrt{6}}}{2}$,
∴$\frac{c}{a}$=$\frac{{\sqrt{6}}}{2}$,∴c=$\frac{{\sqrt{6}}}{2}$a,
∴b=$\sqrt{\frac{3}{2}{a}^{2}-{a}^{2}}$=$\frac{\sqrt{2}}{2}$a,
∴双曲线的渐近线方程为y=±$\frac{\sqrt{2}}{2}$x.
故选D.

点评 本题主要考查双曲线的简单性质的应用,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网