题目内容

4.关于下列命题:
①函数f(x)=|2cos2x-1|最小正周期是π;
②函数y=cos2($\frac{π}{4}$-x)是偶函数;
③函数y=4sin(2x-$\frac{π}{3}$)的一个对称中心是($\frac{π}{6}$,0);
④关于x的方程sinx+$\sqrt{3}$cosx=a(0≤x≤$\frac{π}{2}$)有两相异实根,则实数a的取值范围是(1,2).
写出所有正确的命题的题号:③.

分析 由条件利用正弦函数的、余弦函数的周期性、奇偶性、图象的对称性,以及方程的根的存在性,正弦函数、余弦函数的图象特征,得出结论.

解答 解:①函数f(x)=|2cos2x-1|=|cos2x|最小正周期是$\frac{1}{2}$•$\frac{2π}{2}$=$\frac{π}{2}$,故排除①;
②函数y=cos2($\frac{π}{4}$-x)=cos($\frac{π}{2}$-2x)=cos(2x-$\frac{π}{2}$)=sin2x,为奇函数,故排除②;
③令2x-$\frac{π}{3}$=kπ,求得x=$\frac{kπ}{2}$+$\frac{π}{6}$,k∈Z,
可得函数y=4sin(2x-$\frac{π}{3}$)的一个对称中心是($\frac{π}{6}$,0),故③正确;
④关于x的方程sinx+$\sqrt{3}$cosx=a(0≤x≤$\frac{π}{2}$)有两相异实根,
即2sin(x+$\frac{π}{3}$)=a有两相异实根,即y=2sin(x+$\frac{π}{3}$)的图象和直线y=a有两个不同的交点.
∵0≤x≤$\frac{π}{2}$,∴$\frac{π}{3}$≤x+$\frac{π}{3}$≤$\frac{5π}{6}$,故$\sqrt{3}$≤a<2,
即实数a的取值范围是[$\sqrt{3}$,2),故排除④,
故答案为:③.

点评 本题主要考查正弦函数的、余弦函数的周期性、奇偶性、图象的对称性,以及方程的根的存在性,正弦函数、余弦函数的图象特征,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网