题目内容
求和Sn=1+(1+
)+(1+
+
)+…+(1+
+
+…+
)
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
考点:数列的求和
专题:等差数列与等比数列
分析:由等比数列的通项公式求得1+
+
+…+
,然后再利用分组求和及等比数列的前n项和公式求解.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
解答:
解:∵an=1+
+
+…+
=
=2-
,
∴Sn=1+(1+
)+(1+
+
)+…+(1+
+
+…+
)
=(2-
)+(2-
)+(2-
)+…+(2-
)
=2n-(1+
+
+…+
)=2n-
=2n-2+
.
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
1-
| ||
1-
|
| 1 |
| 2n-1 |
∴Sn=1+(1+
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2n-1 |
=(2-
| 1 |
| 20 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
=2n-(1+
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
1-
| ||
1-
|
| 1 |
| 2n-1 |
点评:本题考查了等比数列的前n项和,关键在于求出通项公式,是中档题.
练习册系列答案
相关题目