题目内容

若α∈[0,2π],用
1+cosα
2
+
1-cosα
2
=sin
α
2
-cos
α
2
.则α的取值范围是
 
考点:三角函数的化简求值
专题:三角函数的求值
分析:利用半角公式可得
1+cosα
2
+
1-cosα
2
=|cos
α
2
|+|sin
α
2
|,结合题意可得cos
α
2
≤0,sin
α
2
≥0,又α∈[0,2π],从而可得答案.
解答: 解:∵
1+cosα
2
+
1-cosα
2
=|cos
α
2
|+|sin
α
2
|=-cos
α
2
+sin
α
2

∴cos
α
2
≤0,sin
α
2
≥0,①
又α∈[0,2π],
α
2
∈[0,π],②
∴由①②得:
α
2
∈[
π
2
,π],即α∈[π,2π],
故答案为:[π,2π].
点评:本题考查三角函数的化简求值,着重考查半角公式的应用,分析得到cos
α
2
≤0,sin
α
2
≥0是关键,基本知识的考查.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网