题目内容

6.正方体ABCD-A1B1C1D1中.
(1)求证:BD1⊥平面AB1C;
(2)求AB与平面AB1C所成的角.

分析 (1)以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能证明BD1⊥平面AB1C.
(2)求出$\overrightarrow{AB}$和平面AB1C的法向量,利用向量法能求出AB与平面AB1C所成的角.

解答 证明:(1)设正方体ABCD-A1B1C1D1中棱长为1,
以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,
B(1,1,0),D1(0,0,1),A(1,0,0),B1(1,1,1),C(0,1,0),
$\overrightarrow{B{D}_{1}}$=(-1,-1,1),$\overrightarrow{A{B}_{1}}$=(0,1,1),$\overrightarrow{AC}$=(-1,1,0),
$\overrightarrow{B{D}_{1}}$•$\overrightarrow{A{B}_{1}}$=0-1+1=0,$\overrightarrow{B{D}_{1}}$•$\overrightarrow{AC}$=1-1+0=0,
∴BD1⊥AB1,BD1⊥AC,
又AB1∩AC=A,∴BD1⊥平面AB1C.
解:(2)$\overrightarrow{AB}$=(0,1,0),
设平面AB1C的法向量$\overrightarrow{n}$=(x,y,z),
则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{A{B}_{1}}=y+z=0}\\{\overrightarrow{n}•\overrightarrow{AC}=-x+y=0}\end{array}\right.$,取x=1,得$\overrightarrow{n}$=(1,1,-1),
设AB与平面AB1C所成的角为θ,
则sinθ=$\frac{|\overrightarrow{AB}•\overrightarrow{n}|}{|\overrightarrow{AB}|•|\overrightarrow{n}|}$=$\frac{1}{\sqrt{3}}$=$\frac{\sqrt{3}}{3}$.
∴θ=arcsin$\frac{\sqrt{3}}{3}$.
∴AB与平面AB1C所成的角为arcsin$\frac{\sqrt{3}}{3}$.

点评 本题考查线面垂直的证明,考查线面角的大小的求法,是中档题,解题时要认真审题,注意向量法的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网