题目内容
16.若复数z满足(2-i)z=1-i(i为虚数单位),则复数z在复平面内对应的点在( )| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
分析 利用复数的运算法则、几何意义即可得出.
解答 解:复数z满足(2-i)z=1-i(i为虚数单位),
∴(2+i)(2-i)z=(1-i)(2+i),∴5z=3-i,
z=$\frac{3}{5}$-$\frac{1}{5}$i
则复数z在复平面内对应的点$(\frac{3}{5},-\frac{1}{5})$在第四象限.
故选:D.
点评 本题考查了复数的运算法则、几何意义,考查了推理能力与计算能力,属于基础题.
练习册系列答案
相关题目
1.
如图,点P是菱形ABCD所在平面外一点,PA⊥平面ABCD,PA∥FB∥ED,∠ABC=60°,PA=AB=2BF=2DE.
(Ⅰ)求证:平面PAC⊥平面PCE;
(Ⅱ)求二面角B-PC-F的余弦值.
(Ⅰ)求证:平面PAC⊥平面PCE;
(Ⅱ)求二面角B-PC-F的余弦值.
8.点P是双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1({a>0,b>0})$的右支上一点,其左,右焦点分别为F1,F2,直线PF1与以原点O为圆心,a为半径的圆相切于A点,线段PF1的垂直平分线恰好过点F2,则离心率的值为( )
| A. | $\frac{3}{2}$ | B. | $\frac{4}{3}$ | C. | $\frac{5}{3}$ | D. | $\frac{5}{4}$ |