题目内容
18.在△ABC中,A=$\frac{π}{6},BC=\frac{{4\sqrt{3}}}{3}$,AB=4,则C=( )| A. | $\frac{π}{6}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{3}$或$\frac{2π}{3}$ | D. | $\frac{π}{2}$ |
分析 利用正弦定理列出关系式,把各自的值代入求出C即可.
解答 解:∵在△ABC中,A=$\frac{π}{6}$,BC=$\frac{4\sqrt{3}}{3}$,AB=4,
∴由正弦定理$\frac{BC}{sinA}$=$\frac{AB}{sinC}$得:sinC=$\frac{ABsinA}{BC}$=$\frac{4×\frac{1}{2}}{\frac{4\sqrt{3}}{3}}$=$\frac{\sqrt{3}}{2}$,
则C=$\frac{π}{3}$或$\frac{2π}{3}$,
故选:C.
点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.
练习册系列答案
相关题目
9.在平面直角坐标系xOy中,以C(1,1)为圆心的圆与x轴和y轴分别相切于A,B两点,点M,N分别在线段OA,OB上,若,MN与圆C相切,则|MN|的最小值为( )
| A. | 1 | B. | $2-\sqrt{2}$ | C. | $2\sqrt{2}+2$ | D. | $2\sqrt{2}-2$ |
6.给出定义:如果函数f(x)在区间[a,b]上可导,其导函数为f'(x),且?x1,x2∈(a,b),当x1≠x2时总满足:f'(x1)=$\frac{f(b)-f(a)}{b-a}$,f'(x2)=$\frac{f(a)-f(b)}{a-b}$,则称实数x1,x2为[a,b]上的“希望数”,函数f(x)为[a,b]上的“希望函数”.如果函数f(x)=$\frac{1}{3}$x3-x2+k是[0,k]上的“希望函数”,那么实数k的取值范围是( )
| A. | ($\frac{3}{2}$,3) | B. | (2,3) | C. | ($\frac{3}{2}$,2$\sqrt{3}$) | D. | (2,2$\sqrt{3}$) |
8.命题“?x∈R,都有|sinx|<1”的否定是( )
| A. | ?x∈R,都有|sinx|>1 | B. | ?x∈R,都有|sinx|≥1 | C. | ?x∈R,使|sinx|>1 | D. | ?x∈R,使|sinx|≥1 |