题目内容

18.在△ABC中,A=$\frac{π}{6},BC=\frac{{4\sqrt{3}}}{3}$,AB=4,则C=(  )
A.$\frac{π}{6}$B.$\frac{2π}{3}$C.$\frac{π}{3}$或$\frac{2π}{3}$D.$\frac{π}{2}$

分析 利用正弦定理列出关系式,把各自的值代入求出C即可.

解答 解:∵在△ABC中,A=$\frac{π}{6}$,BC=$\frac{4\sqrt{3}}{3}$,AB=4,
∴由正弦定理$\frac{BC}{sinA}$=$\frac{AB}{sinC}$得:sinC=$\frac{ABsinA}{BC}$=$\frac{4×\frac{1}{2}}{\frac{4\sqrt{3}}{3}}$=$\frac{\sqrt{3}}{2}$,
则C=$\frac{π}{3}$或$\frac{2π}{3}$,
故选:C.

点评 此题考查了正弦定理,以及特殊角的三角函数值,熟练掌握正弦定理是解本题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网