题目内容

1.已知函数f(x)=loga(-x2+log2ax)对任意x∈(0,$\frac{1}{2}$)都有意义,则实数a的取值范围是(  )
A.[$\frac{1}{128}$,$\frac{1}{2}$)B.[$\frac{1}{64}$,$\frac{1}{2}$)C.[$\frac{1}{32}$,$\frac{1}{2}$)D.[$\frac{1}{16}$,$\frac{1}{2}$)

分析 利用函数的单调性得出log2ax>0,0<2a<1,0<a<$\frac{1}{2}$,判断出函数g(x)=-x2+log2ax在(0,$\frac{1}{2}$)单调递减,转化为-$\frac{1}{4}$+log2a $\frac{1}{2}$≥0即可求解.

解答 解:∵函数f(x)=loga(-x2+log2ax)的定义域是(0,$\frac{1}{2}$),
∴-x2+log2ax>0,x∈(0,$\frac{1}{2}$),
∵-$\frac{1}{4}$<-x2<0,
∴log2ax>0,
∴0<2a<1,0<a<$\frac{1}{2}$,
∵函数g(x)=-x2+log2ax在(0,$\frac{1}{2}$)单调递减,
∴g(x)>g($\frac{1}{2}$)=-$\frac{1}{4}$+log2a $\frac{1}{2}$恒成立,
∴只需-$\frac{1}{4}$+log2a $\frac{1}{2}$≥0即可.
a≥$\frac{1}{32}$,
故实数a的取值范围为[$\frac{1}{32}$,$\frac{1}{2}$),
故选:C.

点评 本题考查了有关系的二次,对数函数的单调性,转化思想求解函数的最值结合不等式求解,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网