题目内容

9.已知|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|=1,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,则($\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$)•$\overrightarrow{c}$的最大值是$\sqrt{2}$-1.

分析 |$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|=1,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,不妨设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(cosθ,sinθ)(θ∈[0,2π)),代入化简利用三角函数的单调性最值即可得出.

解答 解:∵|$\overrightarrow{a}$|=|$\overrightarrow{b}$|=|$\overrightarrow{c}$|=1,且$\overrightarrow{a}$⊥$\overrightarrow{b}$,
不妨设$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(0,1),$\overrightarrow{c}$=(cosθ,sinθ)(θ∈[0,2π))
则($\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$)•$\overrightarrow{c}$=(1-cosθ)•cosθ+(1-sinθ)•sinθ=sinθ+cosθ-1=$\sqrt{2}sin(θ+\frac{π}{4})$-1$≤\sqrt{2}$-1,
∴($\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$)•$\overrightarrow{c}$的最大值是$\sqrt{2}$-1.
故答案为:$\sqrt{2}$-1.

点评 本题考查了三角函数的单调性最值、向量的坐标运算数量积运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网