题目内容

如图,在平面四边形ABCD中,DE=1.EC=
7
,∠ADC=
3
∠BEC=
π
3
,求
(1)CD;
(2)求cos∠AEB.
考点:余弦定理
专题:解三角形
分析:(1)在△CDE中,由余弦定理可得:EC2=DE2+DC2-2DE•DC•cos∠ED,解出即可.
(2)在△CDE中,由正弦定理可得:
DC
sin∠DEC
=
EC
sin∠CDE
,可得sin∠DEC\=
DC•sin∠CDE
EC
,∠DEC为锐角,可得cos∠DEC=
1-sin2∠DEC
.设∠DEC=α.
利用cos∠AEB=cos(π-
π
3
-α)
=cos
3
cosα+sin
3
sinα
即可得出.
解答: 解:(1)在△CDE中,由余弦定理可得:EC2=DE2+DC2-2DE•DC•cos∠ED
7=1+DC2-2DC×1×cos
3

化为DC2+DC-6=0,
解得DC=2.
(2)在△CDE中,由正弦定理可得:
DC
sin∠DEC
=
EC
sin∠CDE

sin∠DEC\=
DC•sin∠CDE
EC
=
2×sin
3
7
=
21
7

∵∠DEC为锐角,∴cos∠DEC=
1-sin2∠DEC
=
2
7
7

设∠DEC=α.
∴cos∠AEB=cos(π-
π
3
-α)
=cos
3
cosα+sin
3
sinα

=-
1
2
×
2
7
7
+
3
2
×
21
7
=
7
14
点评:本题考查了正弦定理与余弦定理、诱导公式、两角和差的余弦公式、同角三角函数基本关系式,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网