题目内容
10.| A. | $\frac{32}{3}$ | B. | $\frac{16}{3}$ | C. | $\frac{8}{3}$ | D. | $\frac{4}{3}$ |
分析 以正方体为载体作出三棱锥的直观图,代入体积公式计算即可.
解答
解:几何体为三棱锥P-OBD,其中P,B,D为正方体的顶点,O为正方形ABCD的中心,
正方体的棱长为4,
∴VP-OBD=$\frac{1}{3}{S}_{△OBD}•PA$=$\frac{1}{3}×\frac{1}{2}×4×2×4$=$\frac{16}{3}$.
故选:B.
点评 本题考查了四棱锥的三视图、勾股定理,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
18.某同学在利用“五点法”作函数f(x)=Asin(ωx+Φ)+t的图象时,列出了如下表格中的部分数据
(1)请将表格补充完整,并写出f(x)的解析式;
(2)若x∈[-$\frac{5π}{12},\frac{π}{4}}$],求f(x)的最大值和最小值.
| x | $\frac{5π}{12}$ | $\frac{3π}{4}$ | |||
| ωx+Φ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| f(x) | 6 | -2 |
(2)若x∈[-$\frac{5π}{12},\frac{π}{4}}$],求f(x)的最大值和最小值.
5.某班级有一个学生A在操场上绕圆形跑道逆时针方向匀速跑步,每52秒跑一圈,在学生A开始跑步时,在教室内有一个学生B往操场看了一次,以后每50秒往操场上看一次,则该学生B“感觉”到学生A的运动是( )
| A. | 逆时针方向匀速前跑 | B. | 顺时针方向匀速前跑 | ||
| C. | 顺时针方向匀速后退 | D. | 静止不动 |
2.某校为了解高二年级不同性别的学生对取消艺术课的态度(支持或反对)进行了如下的调查研究.全年级共有1350人,男女生比例为8:7,现按分层抽样方法抽取若干名学生,每人被抽到的概率均为$\frac{1}{9}$,通过对被抽取学生的问卷调查,得到如下2×2列联表:
(1)完成下列联表,并判断能否有99%的把握认为态度与性别有关?
(2)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
| 支持 | 反对 | 总计 | |
| 男生 | 30 | ||
| 女生 | 25 | ||
| 总计 |
(2)若某班有6名男生被抽到,其中2人支持,4人反对;有4名女生被抽到,其中2人支持,2人反对,现从这10人中随机抽取一男一女进一步调查原因.求其中恰有一人支持一人反对的概率.
参考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+c)(b+d)(a+b)(c+d)}$
| P(K2≥k0) | 0.10 | 0.050 | 0.010 | 0.005 | 0.001 |
| k0 | 2.7069% | 3.841 | 6.635 | 7.879 | 10.828 |
19.已知x2+4xy-3=0,其中x>0,y∈R,则x+y的最小值是( )
| A. | $\frac{3}{2}$ | B. | 3 | C. | 1 | D. | 2 |