ÌâÄ¿ÄÚÈÝ
4£®| ½×Ìݼ¶±ð | µÚÒ»½×ÌÝË®Á¿¡¡ | µÚ¶þ½×ÌÝË®Á¿¡¡ | µÚÈý½×ÌÝË®Á¿¡¡ |
| ¡¡ÔÂÓÃË®Á¿·¶Î§£¨µ¥Î»£ºÁ¢·½Ã×£© | £¨0£¬10] | £¨10£¬15] | ¡¡£¨15£¬+¡Þ£© |
£¨1£©ÏÖÒªÔÚÕâ10»§¼ÒÍ¥ÖÐÈÎÒâѡȡ3»§£¬ÇóÈ¡µ½µÚ¶þ½×ÌÝË®Á¿µÄ»§ÊýµÄ·Ö²¼Áк;ùÖµ£»
£¨2£©Óó鵽µÄ10»§¼ÒÍ¥×÷ΪÑù±¾¹À¼ÆÈ«ÊеľÓÃñÓÃË®Çé¿ö£¬´ÓÈ«ÊÐÒÀ´ÎËæ»ú³éÈ¡10»§£¬Èô³éµ½n»§ÔÂÓÃË®Á¿ÎªµÚ¶þ½×ÌÝË®Á¿µÄ¿ÉÄÜÐÔ×î´ó£¬Çó³önµÄÖµ£®
·ÖÎö £¨1£©Óɾ¥Ò¶Í¼¿ÉÖª£º³éÈ¡µÄ10»§ÖÐÓÃË®Á¿ÎªÒ»½×µÄÓÐ2»§£¬¶þ½×µÄÓÐ6»§£¬Èý½×µÄÓÐ2»§£®È¡µ½µÚ¶þ½×ÌÝË®Á¿µÄ»§ÊýXµÄȡֵ¿ÉÄÜΪ0£¬1£¬2£¬3£®ÀûÓÃP£¨X=k£©=$\frac{{∁}_{4}^{3-k}{∁}_{6}^{k}}{{∁}_{10}^{3}}$£¬¿ÉµÃXµÄ¸ÅÂÊ·Ö²¼Áм°ÆäÊýѧÆÚÍû£®
£¨2£©Éè´ÓÈ«ÊÐÒÀ´ÎËæ»ú³éÈ¡10»§£¬³éµ½Y»§ÔÂÓÃË®Á¿ÎªµÚ¶þ½×ÌÝË®Á¿£¬ÔòY¡«B$£¨10£¬\frac{3}{5}£©$£®P£¨Y=k£©=${∁}_{10}^{k}£¨\frac{3}{5}£©^{k}£¨\frac{2}{5}£©^{10-k}$£¨k=0£¬1£¬2£¬¡£¬10£©£®Éèt=$\frac{P£¨Y=k£©}{P£¨Y=k-1£©}$=$\frac{3£¨11-k£©}{2k}$£®ÓÉt£¾1£¬¿ÉµÃk£¼6.6£¬P£¨Y=k-1£©£¼P£¨Y=k-1£©£®ÓÉt£¼1£¬Ôòk£¾6.6£¬P£¨Y=k-1£©£¾P£¨Y=k-1£©£¬¼´¿ÉµÃ³ö£®
½â´ð ½â£º£¨1£©Óɾ¥Ò¶Í¼¿ÉÖª£º³éÈ¡µÄ10»§ÖÐÓÃË®Á¿ÎªÒ»½×µÄÓÐ2»§£¬¶þ½×µÄÓÐ6»§£¬Èý½×µÄÓÐ2»§£®È¡µ½µÚ¶þ½×ÌÝË®Á¿µÄ»§ÊýXµÄȡֵ¿ÉÄÜΪ0£¬1£¬2£¬3£®ÔòP£¨X=k£©=$\frac{{∁}_{4}^{3-k}{∁}_{6}^{k}}{{∁}_{10}^{3}}$£¬¿ÉµÃ£ºP£¨X=0£©=$\frac{1}{30}$£¬P£¨X=1£©=$\frac{3}{10}$£¬P£¨X=2£©=$\frac{1}{2}$£¬
P£¨X=3£©=$\frac{1}{6}$£®
¿ÉµÃX·Ö²¼ÁÐΪ£º
| X | 0 | 1 | 2 | 3 |
| P | $\frac{1}{30}$ | $\frac{3}{10}$ | $\frac{1}{2}$ | $\frac{1}{6}$ |
£¨2£©Éè´ÓÈ«ÊÐÒÀ´ÎËæ»ú³éÈ¡10»§£¬³éµ½Y»§ÔÂÓÃË®Á¿ÎªµÚ¶þ½×ÌÝË®Á¿£¬ÔòY¡«B$£¨10£¬\frac{3}{5}£©$£®
P£¨Y=k£©=${∁}_{10}^{k}£¨\frac{3}{5}£©^{k}£¨\frac{2}{5}£©^{10-k}$£¨k=0£¬1£¬2£¬¡£¬10£©£®
Éèt=$\frac{P£¨Y=k£©}{P£¨Y=k-1£©}$=$\frac{3£¨11-k£©}{2k}$£®
Èôt£¾1£¬Ôòk£¼6.6£¬P£¨Y=k-1£©£¼P£¨Y=k-1£©£®Èôt£¼1£¬Ôòk£¾6.6£¬P£¨Y=k-1£©£¾P£¨Y=k-1£©£¬
kÈ¡6£¬»ò7µÄ¿ÉÄÜÐԱȽϴó£®
¾¹ýÑéÖ¤k=6ʱ£¬$\frac{P£¨Y=6£©}{P£¨Y=7£©}$=$\frac{7}{6}$£¾1£®¡àn=6£®
µãÆÀ ±¾Ì⿼²éÁ˾¥Ò¶Í¼µÄÐÔÖʼ°ÆäÓ¦Óᢳ¬¼¸ºÎ·Ö²¼ÁÐÓë¶þÏî·Ö²¼ÁеĸÅÂʼÆËãÓëÊýѧÆÚÍû¼ÆË㹫ʽ¡¢×éºÏÊýµÄ¼ÆË㹫ʽ¡¢²»µÈʽµÄÐÔÖÊ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮