题目内容
19.已知函数 f(x)=2sin2ωx+2sinωxcosωx-1(ω>0)的周期为π.(Ⅰ)求ω的值;
(Ⅱ)求函数f(x)在[$\frac{π}{6}$,$\frac{π}{4}$]上的值域.
分析 (Ⅰ)利用查三角恒等变换化简函数的解析式,再利用正弦函数的周期性求得ω的值.
(Ⅱ)利用正弦函数的定义域和值域,求得函数f(x)在[$\frac{π}{6}$,$\frac{π}{4}$]上的值域.
解答 解:(Ⅰ)∵函数 f(x)=2sin2ωx+2sinωxcosωx-1=sin2ωx-cos2ωx=$\sqrt{2}$sin(2ωx-$\frac{π}{4}$)(ω>0),
故该函数的周期为$\frac{2π}{2ω}$=π,∴ω=1,f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$).
(Ⅱ)在[$\frac{π}{6}$,$\frac{π}{4}$]上,2x-$\frac{π}{4}$∈[$\frac{π}{12}$,$\frac{π}{4}$],
∵sin$\frac{π}{12}$=sin($\frac{π}{3}$-$\frac{π}{4}$)=sin$\frac{π}{3}$cos$\frac{π}{4}$-cos$\frac{π}{3}$sin$\frac{π}{4}$=$\frac{\sqrt{6}-\sqrt{2}}{4}$,
sin(2x-$\frac{π}{4}$)∈[$\frac{\sqrt{6}-\sqrt{2}}{4}$,$\frac{\sqrt{2}}{2}$],∴f(x)∈[$\frac{\sqrt{3}-1}{2}$,1].
点评 本题主要考查三角恒等变换,正弦函数的周期性,正弦函数的定义域和值域,属于中档题.
练习册系列答案
相关题目
14.x,y 满足约束条件$\left\{\begin{array}{l}x+y-2≤0\\ x-2y-2≤0\\ 2x-y+2≥0\end{array}\right.$,若 z=y-ax 取得最大值的最优解不唯一,则实数 a 的值为( )
| A. | $\frac{1}{2}$或-1 | B. | 2 或$\frac{1}{2}$ | C. | 2 或1 | D. | 2 或-1 |
4.设F1,F2分别为椭圆C1:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)与双曲线C2:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$-$\frac{{y}^{2}}{{{b}_{1}}^{2}}$=1(a1、b1>0)的公共焦点,它们在第一象限内交于点M,∠F1MF2=90°,若MF1•MF2=ab,则双曲线C1的离心率为( )
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | $\frac{\sqrt{6}}{2}$ | D. | $\frac{\sqrt{6}}{3}$ |