题目内容

已知直线方程为(2+λ)x+(1-2λ)y+4-3λ=0.
(1)求证不论λ取何实数值,此直线必过定点;
(2)过这定点引一直线,使它夹在两坐标轴间的线段被这点平分,求这条直线方程.
考点:直线的一般式方程
专题:直线与圆
分析:(1)将直线的方程:(2+λ)x+(1-2λ)y+4-3λ=0是过某两直线交点的直线系,故其一定通过某个定点,将其整理成直线系的标准形式,求两定直线的交点此点即为直线恒过的定点.
(2)当斜率不存在时,不合题意;当斜率存在时,设所求的直线方程为y+2=k(x+1),列出方程,进而得出交点.
解答: 证明:(1)直线方程为(2+λ)x+(1-2λ)y+4-3λ=0可化为:
∵λ(x-2y-3)+2x+y+4=0,
∴由
x-2y-3=0
2x+y+4=0
得:
x=-1
y=-2

∴直线l恒过定点M(-1,-2).
解:(2)当斜率不存在时,不合题意;
当斜率存在时,设所求直线l1的方程为y+2=k(x+1),
直线l1与x轴、y轴交于A、B两点,则A(
2
k
-1,0)B(0,k-2).
∵AB的中点为M,
2
k
-1=-2
k-2=-4

解得k=-2.
∴所求直线l1的方程为y+2=-2(x+1),
即:2x+y+4=0.
所求直线l1的方程为2x+y+4=0
点评:本题给出动直线恒过定点,要我们求直线恒过的定点坐标,中点的坐标,着重考查了直线的方程及点与直线位置关系等知识,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网