题目内容
6.已知数列{an}的前n项和Sn=2an-2n+1.(1)证明:数列{$\frac{{a}_{n}}{{2}^{n}}$}是等差数列;
(2)设bn=$\frac{{2}^{2n+1}}{{a}_{n}{a}_{n+1}}$,求数列{bn}的前n项和.
分析 (1)由数列的递推式可得a1=S1,当n≥2时,an=Sn-Sn-1,化简整理,由等差数列的定义即可得证;
(2)运用等差数列的通项公式,化简整理可得bn=$\frac{{2}^{2n+1}}{(n+1)(n+2)•{2}^{n}•{2}^{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,再由数列的求和方法:裂项相消求和,化简即可得到所求和.
解答 解:(1)证明:数列{an}的前n项和Sn=2an-2n+1.①
可得a1=S1=2a1-4,解得a1=4,
当n≥2时,Sn-1=2an-1-2n.②
①-②可得an=Sn-Sn-1=2an-2an-1-2n+1+2n,
则an=2an-1+2n,
可得$\frac{{a}_{n}}{{2}^{n}}$=$\frac{{a}_{n-1}}{n-1}$+1,
则数列{$\frac{{a}_{n}}{{2}^{n}}$}是首项为2,公差为1的等差数列;
(2)由(1)可得an=2n(2+n-1)=(n+1)2n,
bn=$\frac{{2}^{2n+1}}{{a}_{n}{a}_{n+1}}$=$\frac{{2}^{2n+1}}{(n+1)(n+2)•{2}^{n}•{2}^{n+1}}$=$\frac{1}{(n+1)(n+2)}$=$\frac{1}{n+1}$-$\frac{1}{n+2}$,
则数列{bn}的前n项和为$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{5}$+…+$\frac{1}{n}$-$\frac{1}{n+1}$+$\frac{1}{n+1}$-$\frac{1}{n+2}$
=$\frac{1}{2}$-$\frac{1}{n+2}$=$\frac{n}{2(n+2)}$.
点评 本题考查数列的通项公式的求法,注意运用数列的递推式,考查等差数列的定义和通项公式,考查裂项相消求和,以及运算能力,属于中档题.
| A. | $\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$+$\frac{1}{3}$$\overrightarrow{AC}$ | B. | $\overrightarrow{AD}$=$\frac{4}{3}$$\overrightarrow{AB}$-$\frac{1}{3}$$\overrightarrow{AC}$ | C. | $\overrightarrow{AD}$=$\frac{1}{3}$$\overrightarrow{AB}$-$\frac{4}{3}$$\overrightarrow{AC}$ | D. | $\overrightarrow{AD}$=-$\frac{1}{3}$$\overrightarrow{AB}$+$\frac{4}{3}$$\overrightarrow{AC}$ |
| A. | -2 | B. | 2 | C. | -$\frac{1}{2}$ | D. | $\frac{1}{2}$ |
| A. | {1} | B. | {1,2} | C. | {1,2,3} | D. | {1,2,3,4} |
| A. | 60 | B. | -60 | C. | 80 | D. | -80 |