题目内容

16.已知F1为椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1的左焦点,过F1的直线l与椭圆交于两点P,Q.
(Ⅰ)若直线l的倾斜角为45°,求|PQ|;
(Ⅱ)设直线l的斜率为k(k≠0),点P关于原点的对称点为P′,点Q关于x轴的对称点为Q′,P′Q′所在直线的斜率为k′.若|k′|=2,求k的值.

分析 (Ⅰ)直线l的倾斜角为45°,直线l的方程为y=x+1,代入椭圆方程,由韦达定理及弦长公式即可求得|PQ|;
(Ⅱ)设直线l:y=k(x+1),代入椭圆方程,利用韦达定理及直线的斜率公式求得丨k′丨=丨$\frac{{y}_{1}-{y}_{2}}{{x}_{1}+{x}_{2}}$丨=丨$\frac{3\sqrt{1+{k}^{2}}}{2k}$丨=2,即可求得k的值.

解答 解:(Ⅰ)椭圆$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1,a=2,b=$\sqrt{3}$,c=1,
椭圆的左焦点F1(-1,0),设P(x1,y1),Q(x2,y2),
又直线l的倾斜角为45°,
∴直线l的方程为y=x+1,…(1分)
由$\left\{\begin{array}{l}{y=x+1}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,整理得:7x2+8x-8=0,…(3分)
则x1+x2=-$\frac{8}{7}$,x1•x2=-$\frac{8}{7}$.…(4分)
丨PQ丨=$\sqrt{1+{k}^{2}}$•$\sqrt{({x}_{1}+{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\sqrt{2}$•$\sqrt{(-\frac{8}{7})^{2}+4×\frac{8}{7}}$=$\frac{24}{7}$,
∴|PQ|=$\frac{24}{7}$;…(5分)
(Ⅱ)由$\left\{\begin{array}{l}{y=k(x+1)}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,整理得:(3+4k2)x2+8k2x+4k2-12=0,…(6分)
则x1+x2=-$\frac{8{k}^{2}}{3+4{k}^{2}}$,x1•x2=$\frac{4{k}^{2}-12}{3+4{k}^{2}}$,…(8分)
依题意P′(-x1,-y1),Q′(x2,-y2),且y1=k(x1+1),y2=k(x2+1),
∴丨k′丨=丨$\frac{{y}_{1}-{y}_{2}}{{x}_{1}+{x}_{2}}$丨=丨$\frac{k({x}_{1}-{x}_{2})}{{x}_{1}+{x}_{2}}$丨,…(10分)
其中丨x1-x2丨=$\sqrt{({x}_{1}-{x}_{2})^{2}-4{x}_{1}{x}_{2}}$=$\frac{12\sqrt{1+{k}^{2}}}{3+4{k}^{2}}$,…(11分)
∴丨k′丨=丨$\frac{3\sqrt{1+{k}^{2}}}{2k}$丨=2.…(12分)
解得:7k2=9,k=±$\frac{3}{7}$$\sqrt{7}$,
k的值±$\frac{3}{7}$$\sqrt{7}$..…(13分)

点评 本题考查椭圆的标准方程,直线与椭圆的位置关系,考查韦达定理,弦长公式及直线的斜率公式的应用,考查计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网