题目内容

2.已知△ABC中,A=90°,AB=3,AC=2.已知λ∈R,且点P,Q满足$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,$\overrightarrow{AQ}$=(1-λ)$\overrightarrow{AC}$,若$\overrightarrow{BQ}$•$\overrightarrow{CP}$=-6,则λ=(  )
A.$\frac{1}{3}$B.$\frac{2}{5}$C.$\frac{2}{3}$D.$\frac{4}{5}$

分析 根据平面向量的线性运算,得到$\overrightarrow{BQ}$=(1-λ)$\overrightarrow{AC}$-$\overrightarrow{AB}$,$\overrightarrow{CP}$=λ$\overrightarrow{AB}$-$\overrightarrow{AC}$,代入$\overrightarrow{BQ}$•$\overrightarrow{CP}$=-6,化简整理得:-(1-λ)${\overrightarrow{AC}}^{2}$+[λ(1-λ)+1]$\overrightarrow{AB}•\overrightarrow{AC}$-λ${\overrightarrow{AB}}^{2}$=-6,再由∠A=90°,AB=3,AC=2即可解出λ值.

解答 解:由题意可得$\overrightarrow{AB}•\overrightarrow{AC}=0$,
∵$\overrightarrow{AP}$=λ$\overrightarrow{AB}$,$\overrightarrow{AQ}$=(1-λ)$\overrightarrow{AC}$,
∴$\overrightarrow{BQ}$=(1-λ)$\overrightarrow{AC}$-$\overrightarrow{AB}$,
$\overrightarrow{CP}$=λ$\overrightarrow{AB}$-$\overrightarrow{AC}$,
代入$\overrightarrow{BQ}$•$\overrightarrow{CP}$=-6,化简整理得:-(1-λ)${\overrightarrow{AC}}^{2}$+[λ(1-λ)+1]$\overrightarrow{AB}•\overrightarrow{AC}$-λ${\overrightarrow{AB}}^{2}$=-6,
即-4+4λ-9λ=-6,
解得:λ=$\frac{2}{5}$.
故选:B.

点评 本题考查两个向量垂直的性质,两个向量的加减法的法则,以及其几何意义,考查向量的数量积的运算,是中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网