题目内容

14.二次函数f(x)=ax2-$\sqrt{2}$bx+c,其中a,b,c是某钝角三角形的三边,且三边中b最长.
(1)试证明函数有两个零点;
(2)若a=c,试求零点α,β间距离|α-β|的取值范围.

分析 (1)证明方程有两个不等实根,即只要验证△>0即可.
(2)根据二次方程根与系数的关系,将|α-β|转化为某变量的函数,再求它的变化范围.

解答 (本小题满分12分)
解:(1)在钝角△ABC中,b边最长.
$则{b^2}>{a^2}+{c^2},△={(-\sqrt{2}b)^2}-4ac=2{b^2}-4ac>2({a^2}+{c^2})-4ac=2{(a-c)^2}≥0$,
∴函数有两个零点.
(2)零点为α,β.又a=c,
∴${|{α-β}|^2}={({α+β})^2}-4αβ=\frac{{2{b^2}}}{a^2}-4$=$\frac{{2({a^2}+{c^2}-2accosB)-4{a^2}}}{a^2}=-4cosB$,
∵-1<cosB<0,
∴0<-4cosB<4,
∴0<|α-β|<2.

点评 本题是以一元二次方程作为,考查解三角形的有关定理,余弦定理作为研究三角形边角关系的一大工具,应用广泛.通过余弦定理沟通了三角函数与三角形有关性质,在研究较复杂的三角形问题时,常需正、余弦定理联袂出场、密切协作,方能解决问题,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网