题目内容

11.如图,四边形ABCD是圆O的内接四边形,延长BA和CD相交于点P,A是PB的一个三等点,D是PC的中点.
(1)求$\frac{AD}{BC}$的值:
(2)若BD为圆O的直径,AD=$\frac{\sqrt{2}}{2}$,求圆O的面积.

分析 (1)由已知推导出PA=$\frac{2\sqrt{3}}{3}PD$,△PAD∽△PCB,由此能求出$\frac{AD}{BC}$的值.
(2)连结BD,由勾股定理求出DC=$\frac{3\sqrt{7}}{7}$,BD=$\frac{\sqrt{546}}{14}$,由此能求出圆O的面积.

解答 解:(1)∵四边形ABCD是圆O的内接四边形,延长BA和CD相交于点P,
A是PB的一个三等点,D是PC的中点,
∴PA•PB=PD•PC,即3PA2=2PD2,∴PA=$\sqrt{\frac{2}{3}P{D}^{2}}$=$\frac{2\sqrt{3}}{3}PD$,
∵∠B=∠PDA,∠P=∠P,
∴△PAD∽△PCB,∴$\frac{AD}{BC}=\frac{PA}{PC}$=$\frac{\frac{2\sqrt{3}}{3}PD}{2PD}$=$\frac{\sqrt{3}}{3}$.
(2)连结BD,∵BD为圆O的直径,AD=$\frac{\sqrt{2}}{2}$,
∴∠BCD=∠BAD=90°,BC=$\sqrt{3}AD=\frac{\sqrt{6}}{2}$,AB=$\frac{4\sqrt{3}}{3}$DC,
∴($\frac{4\sqrt{3}}{3}DC$)2+($\frac{\sqrt{2}}{2}$)2=($\frac{\sqrt{6}}{2}$)2+DC2
解得DC=$\frac{3\sqrt{7}}{7}$,∴BD=$\sqrt{\frac{9}{7}+\frac{6}{4}}$=$\frac{\sqrt{546}}{14}$,
∴圆O的面积S=$π×(\frac{1}{2}×\frac{\sqrt{546}}{14})^{2}$=$\frac{273}{14}π$.

点评 本题考查两线段比值的求法,考查圆的面积的求法,是中档题,解题时要认真审题,注意圆的性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网