题目内容

2.已知A,B为圆x2+y2=2ax上的两点,若A,B关于直线y=2x+1对称,则实数a=(  )
A.$-\frac{1}{2}$B.0C.$\frac{1}{2}$D.1

分析 根据题意,圆心C(a,0)在直线y=2x+1上,C的坐标并代入直线2x+y+a=0,再解关于a的方程,即可得到实数a的值.

解答 解:∵A,B为圆x2+y2=2ax上的两点,A,B关于直线y=2x+1对称,
∴圆心C(a,0)在直线y=2x+1上,
∴2a+1=0,解之得a=-$\frac{1}{2}$
故选:A.

点评 本题给圆C关于已知直线对称,求参数a的值.着重考查了圆的标准方程、圆的性质和直线与圆的位置关系等知识,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网