题目内容
已知数列{an}的前n项的和为Sn,且满足a1=1,Sn+1=4an+2
(1)若bn=an+1-2an,证明数列{bn}是等比数列;
(2)求证数列{
}是等差数列;
(3)若cn=
,求数列{cn}的前n项和Tn.
(1)若bn=an+1-2an,证明数列{bn}是等比数列;
(2)求证数列{
| an |
| 2n |
(3)若cn=
| 2n |
| an(3n+2) |
考点:数列的求和,等差数列的性质
专题:综合题,等差数列与等比数列
分析:(1)利用数列的递推式,分别表示出Sn+1和Sn+2,两式相减,整理可得an+2-2an+1=2an+1-4an,进而把bn代入求得
=2,推断出{bn}为首项为3,公比为2的等比数列.
(2)通过(1)利用等比数列的通项公式求得bn,然后利用bn=an+1-2an,整理出判断出数列{
}是等差数列.
(3)求出cn,拆项后利用裂项相消法可求得Tn.
| bn+1 |
| bn |
(2)通过(1)利用等比数列的通项公式求得bn,然后利用bn=an+1-2an,整理出判断出数列{
| an |
| 2n |
(3)求出cn,拆项后利用裂项相消法可求得Tn.
解答:
解:(1)∵a1=1,S2=4a1+2,得a2=S2-a1=3a1+2=5,
∴b1=5-2=3,
由Sn+1=4an+2,得Sn+2=4an+1+2,
两式相减得Sn+2-Sn+1=4(an+1-an),即an+2=4(an+1-an),亦即an+2-2an+1=2an+1-4an,
∵bn=an+1-2an,∴bn+1=2bn,
∴
=2,对n∈N*恒成立,
∴{bn}是首项为3,公比为2的等比数列;
(2)由(1)得bn=3•2n-1,∵bn=an+1-2an,
∴an+1-2an=3•2n-1,
∴
-
=
,
∴{
}是首项为
,公差为
的等差数列;
∴
=
+(n-1)•
=
,
∴an=
•2n.
(3)由(2)得cn=
=
=
(
-
),
∴Tn=
(
-
+
-
+…+
-
)
=
(
-
).
∴b1=5-2=3,
由Sn+1=4an+2,得Sn+2=4an+1+2,
两式相减得Sn+2-Sn+1=4(an+1-an),即an+2=4(an+1-an),亦即an+2-2an+1=2an+1-4an,
∵bn=an+1-2an,∴bn+1=2bn,
∴
| bn+1 |
| bn |
∴{bn}是首项为3,公比为2的等比数列;
(2)由(1)得bn=3•2n-1,∵bn=an+1-2an,
∴an+1-2an=3•2n-1,
∴
| an+1 |
| 2n+1 |
| an |
| 2n |
| 3 |
| 4 |
∴{
| an |
| 2n |
| 1 |
| 2 |
| 3 |
| 4 |
∴
| an |
| 2n |
| 1 |
| 2 |
| 3 |
| 4 |
| 3n-1 |
| 4 |
∴an=
| 3n-1 |
| 4 |
(3)由(2)得cn=
| 2n | ||
|
| 4 |
| (3n-1)(3n+2) |
| 4 |
| 3 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
∴Tn=
| 4 |
| 3 |
| 1 |
| 2 |
| 1 |
| 5 |
| 1 |
| 5 |
| 1 |
| 8 |
| 1 |
| 3n-1 |
| 1 |
| 3n+2 |
=
| 4 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3n+2 |
点评:本题主要考查了由数列的递推式求数列通项、等比数列和等差数列的性质以及数列求和.考查了基础知识的综合运用.
练习册系列答案
相关题目