题目内容
1.根据学生体质健康标准,成绩不低于76分为优良.
(1)写出这组数据的众数和中位数;
(2)将频率视为概率.根据样本估计总体的思想,在该校学生中任选3人进行体质健康测试,记ξ表示成绩“优良”的学生人数,求ξ的分布列及数学期望.
分析 (1)利用茎叶图能求出这组数据的众数,中位数.
(2)由题意可得,ξ的可能取值为0,1,2,3,分别求出相对应的概率,由此能求出ξ的分布列和Eξ.
解答 解:(1)这组数据的众数为87,中位数为84.
(2)由题意可得,ξ的可能取值为0,1,2,3.
P(ξ=0)=$\frac{{C}_{3}^{3}}{{C}_{12}^{3}}$=$\frac{1}{220}$,P(ξ=1)=$\frac{{C}_{9}^{1}{C}_{3}^{2}}{{C}_{12}^{3}}$=$\frac{27}{220}$,
P(ξ=2)=$\frac{{C}_{9}^{2}{C}_{3}^{1}}{{C}_{12}^{2}}$=$\frac{108}{220}$=$\frac{27}{55}$,P(ξ=3)=$\frac{{C}_{9}^{3}}{{C}_{12}^{3}}$=$\frac{84}{220}$=$\frac{21}{55}$,
所以ξ的分布列为
| ξ | 0 | 1 | 2 | 3 |
| P | $\frac{1}{220}$ | $\frac{27}{220}$ | $\frac{27}{55}$ | $\frac{21}{55}$ |
点评 本小题主要考查茎叶图、众数、中位数、随机变量的分布列、期望等基础知识,考查数据处理能力、运算求解能力以及应用意识,考查必然与或然思想等.
练习册系列答案
相关题目
12.已知函数f(x)=asinx在点(0,0)处的切线方程为y=2x,则a=( )
| A. | 1 | B. | 2 | C. | 4 | D. | $\frac{1}{2}$ |
10.在△ABC中,∠ABC=90°,AB=2$\sqrt{3}$,BC=2,P为△ABC内一点,∠BPC=90°
(1)若PB=1,求PA;
(2)若∠APB=120°,设∠PBA=α,求tanα的值.
(1)若PB=1,求PA;
(2)若∠APB=120°,设∠PBA=α,求tanα的值.
11.设抛物线y2=8x的焦点为F,M是抛物线上一点,N(2,2),则|MF|+|MN|的取值范围是( )
| A. | (0,4] | B. | [4,+∞) | C. | (0,2] | D. | [2,+∞) |