题目内容
16.若y=sin2(x4),则$\frac{dy}{dx}$=4x3sin(2x4);$\frac{{d}^{2}y}{d{x}^{2}}$=12x2sin(2x4)+32x6cos(2x4);$\frac{dy}{d({x}^{2})}$=4x2sin(2x4).分析 y=sin2(x4)=$\frac{1-cos(2{x}^{4})}{2}$,利用导数的于是法则可得y′=4x3sin(2x4),y″=12x2sin(2x4)+32x6cos(2x4).可得$\frac{dy}{dx}$,$\frac{{d}^{2}y}{d{x}^{2}}$.令x2=t,则y=$\frac{1-cos2{t}^{2}}{2}$,y′=4tsin(2t2)=4x2sin(2x4).可得$\frac{dy}{d({x}^{2})}$=$\frac{dy}{dt}$.
解答 解:y=sin2(x4)=$\frac{1-cos(2{x}^{4})}{2}$,
∴y′=$\frac{2×4{x}^{3}sin(2{x}^{4})}{2}$=4x3sin(2x4),y″=12x2sin(2x4)+32x6cos(2x4).
∴$\frac{dy}{dx}$=4x3sin(2x4);$\frac{{d}^{2}y}{d{x}^{2}}$=12x2sin(2x4)+32x6cos(2x4).
令x2=t,则y=$\frac{1-cos2{t}^{2}}{2}$,y′=4tsin(2t2)=4x2sin(2x4).
$\frac{dy}{d({x}^{2})}$=$\frac{dy}{dt}$=4tsin(2t2)=4x2sin(2x4).
故答案为:4x3sin(2x4),12x2sin(2x4)+32x6cos(2x4),4x2sin(2x4).
点评 本题考查了导数的运算法则、换元法,考查了推理能力与计算能力,属于中档题.
练习册系列答案
相关题目
7.若实数x,y满足条件$\left\{\begin{array}{l}y-x≥0\\ x+y-4≥0\\ x-3y+12≥0\end{array}\right.$,则z=2x+y-1的最大值为17.
11.已知函数f(x)=-2x2+1,则f(-1)=( )
| A. | -3 | B. | 3 | C. | -1 | D. | 1 |
5.若集合A={x|x>-1},下列关系式中成立的为( )
| A. | 0⊆A | B. | {0}∈A | C. | ∅∈A | D. | {0}⊆A |
6.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$满足|$\overrightarrow{a}$|=2,|$\overrightarrow{b}$|=1,$\overrightarrow{a}•\overrightarrow{b}$=1,则向量$\overrightarrow{a}$与$\overrightarrow{a}-\overrightarrow{b}$的夹角为( )
| A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{5π}{6}$ | D. | $\frac{2π}{3}$ |