题目内容

16.若y=sin2(x4),则$\frac{dy}{dx}$=4x3sin(2x4);$\frac{{d}^{2}y}{d{x}^{2}}$=12x2sin(2x4)+32x6cos(2x4);$\frac{dy}{d({x}^{2})}$=4x2sin(2x4).

分析 y=sin2(x4)=$\frac{1-cos(2{x}^{4})}{2}$,利用导数的于是法则可得y′=4x3sin(2x4),y=12x2sin(2x4)+32x6cos(2x4).可得$\frac{dy}{dx}$,$\frac{{d}^{2}y}{d{x}^{2}}$.令x2=t,则y=$\frac{1-cos2{t}^{2}}{2}$,y′=4tsin(2t2)=4x2sin(2x4).可得$\frac{dy}{d({x}^{2})}$=$\frac{dy}{dt}$.

解答 解:y=sin2(x4)=$\frac{1-cos(2{x}^{4})}{2}$,
∴y′=$\frac{2×4{x}^{3}sin(2{x}^{4})}{2}$=4x3sin(2x4),y=12x2sin(2x4)+32x6cos(2x4).
∴$\frac{dy}{dx}$=4x3sin(2x4);$\frac{{d}^{2}y}{d{x}^{2}}$=12x2sin(2x4)+32x6cos(2x4).
令x2=t,则y=$\frac{1-cos2{t}^{2}}{2}$,y′=4tsin(2t2)=4x2sin(2x4).
$\frac{dy}{d({x}^{2})}$=$\frac{dy}{dt}$=4tsin(2t2)=4x2sin(2x4).
故答案为:4x3sin(2x4),12x2sin(2x4)+32x6cos(2x4),4x2sin(2x4).

点评 本题考查了导数的运算法则、换元法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网