题目内容
点O在△ABC的内部,且满足
+2
+4
=0,则△ABC的面积与△AOC的面积之比是( )
| OA |
| OB |
| OC |
A、
| ||
| B、3 | ||
C、
| ||
| D、2 |
考点:向量的三角形法则
专题:平面向量及应用
分析:如图所示,作OD=4OC,以OA,OD为邻边作平行四边形OAED,连接AD,OE,交于点M,OE交AC于点N.由满足
+2
+4
=
,可得
=-2
,可得
=
=-
,|
|=
|
|=
|
|,即可得出.
| OA |
| OB |
| OC |
| 0 |
| OE |
| OB |
| ON |
| 1 |
| 5 |
| OE |
| 2 |
| 5 |
| OB |
| ON |
| 2 |
| 5 |
| OB |
| 2 |
| 7 |
| BN |
解答:
解:如图所示,
作OD=4OC,以OA,OD为邻边作平行四边形OAED,
连接AD,OE,交于点M,OE交AC于点N.
∵满足
+2
+4
=
,
∴
+4
=-2
,
∴
=-2
,
∴
=
=
,
∴
=
=-
,
∴|
|=
|
|=
|
|,
∴△ABC的面积与△AOC的面积之比是7:2.
故选:A.
作OD=4OC,以OA,OD为邻边作平行四边形OAED,
连接AD,OE,交于点M,OE交AC于点N.
∵满足
| OA |
| OB |
| OC |
| 0 |
∴
| OA |
| OC |
| OB |
∴
| OE |
| OB |
∴
| OC |
| AE |
| ON |
| NE |
| 1 |
| 4 |
∴
| ON |
| 1 |
| 5 |
| OE |
| 2 |
| 5 |
| OB |
∴|
| ON |
| 2 |
| 5 |
| OB |
| 2 |
| 7 |
| BN |
∴△ABC的面积与△AOC的面积之比是7:2.
故选:A.
点评:本题考查了向量的三角形法则、向量共线定理,考查了推理能力与计算能力,属于难题.
练习册系列答案
相关题目