题目内容
11.若锐角△ABC的面积为10,且AB=5,AC=8,则BC等于$\sqrt{89-40\sqrt{3}}$.分析 由已知利用三角形面积公式可求sinA的值,利用同角三角函数基本关系式可求cosA,进而利用余弦定理即可计算求得BC的值.
解答 解:∵AB=5,AC=8,锐角△ABC的面积为10,
∴10=$\frac{1}{2}$×5×8×sinA,解得:sinA=$\frac{1}{2}$,
∵△ABC为锐角三角形,
∴cosA=$\sqrt{1-si{n}^{2}A}$=$\frac{\sqrt{3}}{2}$,
∴BC=$\sqrt{A{B}^{2}+A{C}^{2}-2AB•AC•cosA}$=$\sqrt{25+64-2×5×8×\frac{\sqrt{3}}{2}}$=$\sqrt{89-40\sqrt{3}}$.
故答案为:$\sqrt{89-40\sqrt{3}}$.
点评 本题主要考查了三角形面积公式,同角三角函数基本关系式,余弦定理在解三角形中的综合应用,考查了计算能力和转化思想,属于基础题.
练习册系列答案
相关题目
1.△ABC内有任意三点不共线的2016个点,加上A,B,C三个顶点,共2019个点,把这2019个点连线形成互不重叠(即任意两个三角形之间互不覆盖)的小三角形,则一共可以形成小三角形的个数为( )
| A. | 4033 | B. | 4035 | C. | 4037 | D. | 4039 |
6.某校高一年级有四个班,其中一、二班为数学课改班,三、四班为数学非课改班.在期末考试中,课改班与非课改班的数学成绩优秀与非优秀人数统计如下表.
(Ⅰ)求d的值为多少?若采用分层抽样的方法从课改班的学生中随机抽取4人,则数学成绩优秀和数学成绩非优秀抽取的人数分别是多少?
(Ⅱ)在(Ⅰ)的条件下抽取的4人中,再从中随机抽取2人,求两人数学成绩都优秀的概率.
| 优秀 | 非优秀 | 总计 | |
| 课改班 | a | 50 | b |
| 非课改班 | 20 | c | 110 |
| 合计 | d | e | 210 |
(Ⅱ)在(Ⅰ)的条件下抽取的4人中,再从中随机抽取2人,求两人数学成绩都优秀的概率.