题目内容

20.如图所示,三棱柱ABC-A1B1C1的底面是正三角形,侧棱AA1⊥底面ABC,AB=1,AA1=2,点D在侧棱AA1上,点G,H分别是△ABC,△BCD的重心.
(1)求证:GH∥AD;
(2)当AH=$\frac{\sqrt{3}}{2}$时,求AD的长.

分析 (1)取BC的中点E,连接AE,DE,根据重心的定义和性质,可得GH:HE=AG:GE=2:1,再由平行线分线段成比例定理的逆定理得到结论;
(2)根据AB=1,依次计算AE,AG,GH,AD的长度,可得答案.

解答 证明:(1)取BC的中点E,连接AE,DE,
∵点G,H分别是△ABC,△BCD的重心.
∴G在AE上,H在DE上,
且GH:HE=AG:GE=2:1,
∴GH∥AD;
(2)∵AB=1,
∴AE=$\sqrt{{1}^{2}-(\frac{1}{2})^{2}}$=$\frac{\sqrt{3}}{2}$,
∴AG=$\frac{2}{3}$AE=$\frac{2}{3}•\frac{\sqrt{3}}{2}$=33,
又∵AH=$\frac{\sqrt{3}}{2}$,
∴GH=$\sqrt{{AH}^{2}-{AG}^{2}}$=$\sqrt{(\frac{\sqrt{3}}{2})^{2}-(\frac{\sqrt{3}}{3})^{2}}$=$\frac{\sqrt{15}}{6}$,
∴AD=3GH=$\frac{\sqrt{15}}{2}$

点评 本题考查的知识点是三角形的五心,平行线分线段成比例定理的逆定理,勾股定理,难度中档.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网