题目内容

已知函数f(x)=2asinxcosx+
3
cos2x-
3
sin2x,且f(
π
3
)=0.
(1)求a的值及f(x)的最小正周期;
(2)当x∈[-
π
3
π
6
]时,求f(x)的值域.
考点:三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:计算题,三角函数的图像与性质
分析:(1)化简解析式可得f(x)=asin2x+
3
cos2x,由f(
π
3
)=asin(2×
π
3
)+
3
cos(2×
π
3
)=0,从而解得a=1,可得函数解析式为f(x)=2sin(2x+
π
3
),
即可求周期.
(2)由x∈[-
π
3
π
6
],可得2x+
π
3
∈[-
π
3
3
],即可取得f(x)的值域.
解答: 解:(1)∵f(x)=2asinxcosx+
3
cos2x-
3
sin2x,
=asin2x+
3
cos2x,
∵f(
π
3
)=asin(2×
π
3
)+
3
cos(2×
π
3
)=0.
3
2
a-
3
2
=0,从而解得a=1.
∴f(x)=sin2x+
3
cos2x=2sin(2x+
π
3
),
∴T=
2
=π,
(2)∵x∈[-
π
3
π
6
],
∴2x+
π
3
∈[-
π
3
3
],
∴2sin(2x+
π
3
)∈[-
3
,2].
点评:本题主要考察了三角函数中的恒等变换应用,三角函数的周期性及其求法,正弦函数的图象与性质,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网