题目内容
已知数列{an}的首项a1=
,an+1=
,n=1,2,3,….
(Ⅰ)证明:数列{
-1}是等比数列;
(Ⅱ)求数列 {
}的前n项和Sn.
| 2 |
| 3 |
| 2an |
| an+1 |
(Ⅰ)证明:数列{
| 1 |
| an |
(Ⅱ)求数列 {
| n |
| an |
考点:数列的求和,等比关系的确定
专题:综合题,等差数列与等比数列
分析:(Ⅰ)由an+1=
,可得
-1=
(
-1),即可证明数列{
-1}是等比数列;
(Ⅱ)分组,再利用错位相减法,即可求出数列{
}的前n项和Sn.
| 2an |
| an+1 |
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
| 1 |
| an |
(Ⅱ)分组,再利用错位相减法,即可求出数列{
| n |
| an |
解答:
(Ⅰ)证明:∵an+1=
,∴
=
=
+
•
,
∴
-1=
(
-1),
又a1=
,∴
-1=
,
∴数列{
-1}是以为
首项,
为公比的等比数列.
(Ⅱ)解:由(Ⅰ)知
-1=
,即
=
+1,
∴
=
+n.
设Tn=
+
+
+…+
,①
则
Tn=
+
+…+
+
,②
由①-②得
Tn=
+
+…+
-
=
-
=1-
-
,
∴Tn=2-
-
.
又1+2+3+…+n=
,
∴数列{
}的前n项和Sn=2-
+
=
=
.
| 2an |
| an+1 |
| 1 |
| an+1 |
| an+1 |
| 2an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| an |
∴
| 1 |
| an+1 |
| 1 |
| 2 |
| 1 |
| an |
又a1=
| 2 |
| 3 |
| 1 |
| a1 |
| 1 |
| 2 |
∴数列{
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
(Ⅱ)解:由(Ⅰ)知
| 1 |
| an |
| 1 |
| 2n |
| 1 |
| an |
| 1 |
| 2n |
∴
| n |
| an |
| n |
| 2n |
设Tn=
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
则
| 1 |
| 2 |
| 1 |
| 22 |
| 2 |
| 23 |
| n-1 |
| 2n |
| n |
| 2n+1 |
由①-②得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2n+1 |
| ||||
1-
|
| n |
| 2n+1 |
| 1 |
| 2n |
| n |
| 2n+1 |
∴Tn=2-
| 1 |
| 2n-1 |
| n |
| 2n |
又1+2+3+…+n=
| n(n+1) |
| 2 |
∴数列{
| n |
| an |
| 2+n |
| 2n |
| n(n+1) |
| 2 |
| n2+n+4 |
| 2 |
| n+2 |
| 2n |
点评:本题考查等比数列的证明,考查数列求和,考查错位相减法的运用,考查学生分析解决问题的能力,属于中档题.
练习册系列答案
相关题目