题目内容


(1)设x≥1,y≥1,证明:xyxy

(2)设1<abc,证明:logab+logbc+logca≤logba+logcb+logac.


证明  (1)由于x≥1,y≥1,所以xyxyxy(xy)+1≤yx+(xy)2.

所以[yx+(xy)2]-[xy(xy)+1]

=[(xy)2-1]-[xy(xy)-(xy)]

=(xy+1)(xy-1)-(xy)(xy-1)

=(xy-1)(xyxy+1)

=(xy-1)(x-1)(y-1).

既然x≥1,y≥1,所以(xy-1)(x-1)(y-1)≥0,从而所要证明的不等式成立.

(2)设logabx,logbcy,由对数的换底公式,得

logca,logba,logcb,logacxy.

于是,所要证明的不等式即为xyxy,其中x=logab≥1,y=logbc≥1.

故由(1)可知所要证明的不等式成立.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网