题目内容


已知数列{an}的前n项和为Sn,且a1=0,对任意n∈N*,都有nan+1Snn(n+1).

(1)求数列{an}的通项公式;

(2)若数列{bn}满足an+log2n=log2bn,求数列{bn}的前n项和Tn.


解:(1)解法一:∵nan+1Snn(n+1),

∴当n≥2时,(n-1)anSn-1n(n-1),

两式相减,得nan+1-(n-1)anSnSn-1n(n+1)-n(n-1),

nan+1-(n-1)anan+2n,化简,得an+1an=2.

n=1时,1×a2S1+1×2,即a2a1=2.

∴数列{an}是以0为首项,2为公差的等差数列.

an=2(n-1)=2n-2.

解法二:由nan+1Snn(n+1),得

n(Sn+1Sn)=Snn(n+1),

整理,得nSn+1=(n+1)Snn(n+1),

两边同除以n(n+1),得=1.

∴数列是以=0为首项,1为公差的等差数列.

=0+n-1=n-1.

Snn(n-1).

n≥2时,anSnSn-1n(n-1)-(n-1)(n-2)=2n-2.

a1=0适合上式,

∴数列{an}的通项公式为an=2n-2.

(2)∵an+log2n=log2bn

bnn·2ann·22n-2n·4n-1.

Tnb1b2b3+…+bn-1bn=40+2×41+3×42+…+(n-1)×4n-2n×4n-1, ①

4Tn=41+2×42+3×43+…+(n-1)×4n-1n×4n, ②

①-②,得-3Tn=40+41+42+…+4n-1n·4n

Tn[(3n-1)·4n+1].

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网