题目内容

4.设向量$\overrightarrow{a}$=(2tanα,tanβ),向量$\overrightarrow{b}$=(4,-3),且$\overrightarrow{a}$+$\overrightarrow{b}$=$\overrightarrow{0}$,则tan(α+β)等于(  )
A.$\frac{1}{7}$B.-$\frac{1}{5}$C.$\frac{1}{5}$D.-$\frac{1}{7}$

分析 利用两个向量坐标形式的运算法则,两角和的正切公式,求得tan(α+β)的值.

解答 解:由题意可得$\overrightarrow{a}$+$\overrightarrow{b}$=(2tanα+4,tanβ-3 )=$\overrightarrow{0}$,∴tanα=-2,tanβ=3,
∴tan(α+β)=$\frac{tanα+tanβ}{1-tanαtanβ}$=$\frac{-2+3}{1-(-2)•3}$=$\frac{1}{7}$,
故选:A.

点评 本题主要考查两个向量坐标形式的运算,两角和的正切公式,属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网