题目内容

已知函数f(x)=
a
x
+lnx(a∈R)
(Ⅰ)当a=1时,求f(x)的最小值;
(Ⅱ)若f(x)在(0,e]上的最小值为2,求实数a的值;
(Ⅲ)当a=-1时,试判断函数g(x)=f(x)+
lnx
x
在其定义域内的零点的个数.
考点:导数在最大值、最小值问题中的应用,函数的最值及其几何意义,根的存在性及根的个数判断
专题:导数的综合应用
分析:(Ⅰ)当a=1时,求出函数的导数,通过函数的单调性求出f(x)的最小值;
(Ⅱ)通过①当a≤0时,②当a∈(0,e]时,③当a>e时,通过x∈(0,e利用导函数的符号,判断函数的单调性,通过函数的最值,推出a符合题意的值即可;
(Ⅲ)当a=-1时,求出函数g(x)=f(x)+
lnx
x
的定义域,函数的导数求出函数的最值与0比较,判断在其定义域内的零点的个数即可.
解答: 解:(Ⅰ)当a=1时,f(x)=
1
x
+lnx,(x>0)
f′(x)=-
1
x2
+
1
x
=
x-1
x2

当x∈(0,1)时,f′(x)<0,f(x)单调递减,
当x∈(1,+∞)时,f′(x)>0,f(x)单调递增,
所以,当x=1时,f(x)有最小值:f(x)min=f(1)=1.

(Ⅱ)因为f′(x)=-
a
x2
+
1
x
=
x-a
x2

①当a≤0时,f′(x)>0,f(x)在(0,e]上为增函数,此时f(x)在(0,e]上无最小值.
②当a∈(0,e]时,若x∈(0,a),则f′(x)<0,f(x)单调递减,
若x∈(a,e],则f′(x)>0,f(x)单调递增,
所以f(x)min=f(a)=1+lna=2,∴a=e,符合题意;
③当a>e时,x∈(0,e],
∴f′(x)<0,f(x)单调递减,
所以f(x)min=f(e)=
a
e
+1=2

∴a=e,不符合题意;
综上所述,a=e时符合题意.

(Ⅲ)证明当a=-1时,函数g(x)=-
1
x
+lnx+
lnx
x

g′(x)=
1
x2
+
1
x
+
1-lnx
x2
=
2+x-lnx
x2

令φ(x)=2+x-lnx,(x>0),则φ′(x)=1-
1
x
=
x-1
x

所以x∈(0,1)时,φ′(x)<0,φ(x)单调递减,
当x∈(1,+∞)时,φ′(x)>0,φ(x)单调递增,
所以,φ(x)min=φ(1)=3>0,在定义域内g′(x)>0,g(x)在(0,+∞)单调递增,
又g(1)=-1<0,而g(e)=-
1
e
+1+
1
e
=1>0

因此,函数g(x)在(1,e)上必有零点,又g(x)在(0,+∞)单调递增,
所以函数g(x)=f(x)+
lnx
x
在其定义域内有唯一的零点.
点评:本题考查函数的导数的应用,函数的最值的求法,考查分类讨论思想以及转化思想的应用.考查分析问题解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网