题目内容

6.长方体ABCD-A1B1C1D1中,AB=BC=1,CC1=$\sqrt{2}$,则异面直线AC与BA1所成角的余弦值为(  )
A.$\frac{{\sqrt{30}}}{6}$B.$\frac{2}{3}$C.$\frac{{\sqrt{6}}}{3}$D.$\frac{{\sqrt{6}}}{6}$

分析 异面直线AC与BA1所成角等于∠BA1C1,在△BA1C1中,$cos∠B{A_1}{C_1}=\frac{{\frac{{\sqrt{2}}}{2}}}{{\sqrt{3}}}=\frac{{\sqrt{6}}}{6}$,即可

解答 解:如图,异面直线AC与BA1所成角等于∠BA1C1
在△BA1C1中,$B{A_1}=\sqrt{3},{A_1}{C_1}=\sqrt{2},B{C_1}=\sqrt{3}$,$cos∠B{A_1}{C_1}=\frac{{\frac{{\sqrt{2}}}{2}}}{{\sqrt{3}}}=\frac{{\sqrt{6}}}{6}$,
故选:D.

点评 本题考查了异面直线的夹角,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网