题目内容

已知圆C:x2+y2=4,点P(x0,y0)在直线x-y-4=0上,O为坐标原点,若圆C上存在点Q,使∠OPQ=30°,则x0的取值范围是
 
考点:直线和圆的方程的应用
专题:直线与圆
分析:因为O是圆心,Q是圆上的点,则∠OPQ以PQ为切线时最大,在直角三角形POQ中,直角边OQ=2是定值,因此当PQ为切线时,且∠OPQ=30°时P点的位置(左右两个点)为边界位置,其它符合题意的点都介于这两个点之间,据此求解.
解答: 解:由O是圆心,Q是圆上的点,则∠OPQ以PQ为切线时最大,在直角三角形POQ中,直角边OQ=2是定值,因此当PQ为切线时,且∠OPQ=30°时P点的位置(左右两个点)为边界位置,其它符合题意的点都介于这两个点之间.
此时,在三角形POQ中,因为∠OPQ=30°,且OQ=2,所以sin∠OPQ=
OQ
OP
=
1
2

故OP=4,设P(x0,x0-4),所以OP=
x02+(x0-4)2

解得x0=0或x0=4.
故x0的范围是[0,4].
故答案为:[0,4].
点评:本题考查了圆的几何性质,通过分析先将问题转化为圆的切线问题,最终化成点到直线的距离问题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网