题目内容

4.若sin(α-$\frac{π}{6}$)=$\frac{3}{5}$,α∈(0,$\frac{π}{2}$),则cosα的值为$\frac{4\sqrt{3}-3}{10}$.

分析 根据α∈(0,$\frac{π}{2}$),求解出α-$\frac{π}{6}$∈($-\frac{π}{6}$,$\frac{π}{3}$),可得cos($α-\frac{π}{6}$)=$\frac{4}{5}$,构造思想,cosα=cos(α$-\frac{π}{6}$$+\frac{π}{6}$),利用两角和与差的公式打开,可得答案.

解答 解:∵α∈(0,$\frac{π}{2}$),
∴α-$\frac{π}{6}$∈($-\frac{π}{6}$,$\frac{π}{3}$),
sin(α-$\frac{π}{6}$)=$\frac{3}{5}$,
∴cos($α-\frac{π}{6}$)=$\frac{4}{5}$,
那么cosα=cos[(α$-\frac{π}{6}$)$+\frac{π}{6}$]=cos($α-\frac{π}{6}$)cos($\frac{π}{6}$)-sin($α-\frac{π}{6}$)sin$\frac{π}{6}$=$\frac{4}{5}×\frac{\sqrt{3}}{2}-\frac{3}{5}×\frac{1}{2}$=$\frac{4\sqrt{3}-3}{10}$
故答案为:$\frac{4\sqrt{3}-3}{10}$.

点评 本题考查了同角三角函数关系式的计算和两角和与差的公式的运用,利用了构造的思想.属于基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网