题目内容
6.数列{an}满足an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}≤{a}_{n}<1)}\end{array}\right.$,若a1=$\frac{6}{7}$,则a2016=$\frac{3}{7}$.分析 直接由数列递推式分段求出数列的前几项,可得数列{an}是周期为3的周期数列,则答案可求.
解答 解:由an+1=$\left\{\begin{array}{l}{2{a}_{n}(0≤{a}_{n}<\frac{1}{2})}\\{2{a}_{n}-1(\frac{1}{2}≤{a}_{n}<1)}\end{array}\right.$,且a1=$\frac{6}{7}$,得:
${a}_{2}=2{a}_{1}-1=2×\frac{6}{7}-1=\frac{5}{7}$,${a}_{3}=2{a}_{2}-1=2×\frac{5}{7}-1=\frac{3}{7}$,
${a}_{4}=2{a}_{3}=2×\frac{3}{7}=\frac{6}{7}$,${a}_{5}=2{a}_{4}-1=2×\frac{6}{7}-1=\frac{5}{7}$,…,
由上可知,数列{an}是周期为3的周期数列,
∴${a}_{2016}={a}_{3}=\frac{3}{7}$.
故答案为:$\frac{3}{7}$.
点评 本题考查数列递推式,考查了数列的函数特性,训练了分段函数的应用,是基础题.
练习册系列答案
相关题目
16.在${(x+\frac{2}{x})^6}$的展开式中,常数项为( )
| A. | 160 | B. | 64 | C. | 20 | D. | 8 |
17.已知复数$z=\frac{1-i}{2-i}$(其中i为虚数单位),则复数z在坐标平面内对应的点在( )
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
14.已知区间D⊆[0,2π],函数y=cosx在区间D上是增函数,函数y=sinx在区间D上是减函数,那么区间D可以是( )
| A. | [0,$\frac{π}{2}$] | B. | [$\frac{π}{2}$,π] | C. | [π,$\frac{3π}{2}$] | D. | [$\frac{3π}{2}$,2π] |
1.设f(x)在(0,+∞)内有定义,若$\frac{f(x)}{x}$单调减少,则对a>0,b>0.有( )
| A. | f(a+b)<f(a) | B. | f(a+b)<f(a)+f(b) | C. | f(a+b)≤a+b | D. | f(a+b)>f(a)+f(b) |