题目内容
已知等差数列{an}满足a4=5,a2+a8=14,数列{bn}满足b1=1,bn+1=2 an+3•bn.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{
}的前n项和;
(3)若cn=an•(
) an+1,求数列{cn}的前n项和Sn.
(1)求数列{an}和{bn}的通项公式;
(2)求数列{
| 1 |
| log2bn+1 |
(3)若cn=an•(
| 2 |
考点:数列的求和,数列递推式
专题:等差数列与等比数列
分析:(1)由已知条件利用等差数列的通项公式列出方程组求出首项和公差,由此能求出等差数列{an}的通项公式;由已知条件得
=4n,由此利用累乘法能求出bn=2n(n-1).
(2)由
=
=
-
,利用裂项求和法能求出数列{
}的前n项和.
(3)cn=(2n-3)•(
)2n-2=(2n-3)•2n-1,由此利用错位相减法能求出数列{cn}的前n项和Sn.
| bn+1 |
| bn |
(2)由
| 1 |
| log2bn+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| log2bn+1 |
(3)cn=(2n-3)•(
| 2 |
解答:
解:(1)∵等差数列{an}满足a4=5,a2+a8=14,
∴
,解得a1=-1,d=2,
∴an=2n-3.
∵数列{bn}满足b1=1,bn+1=2 an+3•bn.
∴
=4n,∴
=4,
=42,
=43,…,
=4n-1,
以上各式相乘,得
=4
=2n(n-1),
∵b1=1,∴bn=2n(n-1).…(4分)
(2)∵
=
=
-
,
∴数列{
}的前n项和为:
1-
+
-
+…+
-
=1-
,
∴
+
+…+
=1-
=
.…(8分)
(3)∵an=2n-3,cn=an•(
) an+1,
∴cn=(2n-3)•(
)2n-2=(2n-3)•2n-1,
∴Sn=-1+1•2+…+(2n-5)•2n-2+(2n-3)•2n-1,①
2Sn=-1•2+1•22+…+(2n-5)•2n-1+(2n-3)•2n,②
①-②,得-Sn=-1+2(2+22+…+2n-1)-(2n-3)•2n
=-1+2•
-(2n-3)•2n
=(5-2n)•2n-5,
∴Sn=(2n-5)•2n+5.…(13分)
∴
|
∴an=2n-3.
∵数列{bn}满足b1=1,bn+1=2 an+3•bn.
∴
| bn+1 |
| bn |
| b2 |
| b1 |
| b3 |
| b2 |
| b4 |
| b3 |
| bn |
| bn-1 |
以上各式相乘,得
| bn |
| b1 |
| n(n-1) |
| 2 |
∵b1=1,∴bn=2n(n-1).…(4分)
(2)∵
| 1 |
| log2bn+1 |
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
∴数列{
| 1 |
| log2bn+1 |
1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| n+1 |
∴
| 1 |
| log2b2 |
| 1 |
| log2b3 |
| 1 |
| log2bn+1 |
| 1 |
| n+1 |
| n |
| n+1 |
(3)∵an=2n-3,cn=an•(
| 2 |
∴cn=(2n-3)•(
| 2 |
∴Sn=-1+1•2+…+(2n-5)•2n-2+(2n-3)•2n-1,①
2Sn=-1•2+1•22+…+(2n-5)•2n-1+(2n-3)•2n,②
①-②,得-Sn=-1+2(2+22+…+2n-1)-(2n-3)•2n
=-1+2•
| 2(1-2n-1) |
| 1-2 |
=(5-2n)•2n-5,
∴Sn=(2n-5)•2n+5.…(13分)
点评:本题考查数列的通项公式和前n项和公式的求法,解题时要认真审题,注意错位相减法、裂项求和法的合理运用.
练习册系列答案
相关题目