题目内容
已知f(x)=3x2-2x,数列{an}的前n项和为Sn,点(n,Sn)(n∈N*)均在函数y=f(x)的图象上.
(1)求数列{an}的通项公式;
(2)设bn=
,Tn是数列{bn}的前n项和,求使得Tn<
对所有n∈N*都成立的最小正整数m.
(1)求数列{an}的通项公式;
(2)设bn=
| 3 |
| anan+1 |
| m |
| 20 |
考点:数列的求和
专题:等差数列与等比数列
分析:(1)由已知条件推导出Sn=3n2-2n,由此能求出an=6n-5,n∈N*.
(2)由bn=
=
=
(
-
),利用裂项求和法求出Tn=
-
<
,由此能求出满足要求的最小整数m=10.
(2)由bn=
| 3 |
| anan+1 |
| 3 |
| (6n-5)(6n+1) |
| 1 |
| 2 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
| 1 |
| 2 |
| 1 |
| 2(6n+1) |
| 1 |
| 2 |
解答:
解:(1)∵f(x)=3x2-2x,数列{an}的前n项和为Sn,
点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,
∴Sn=3n2-2n,
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5,
当n=1时,a1=S1=3-2=1,满足上式,
∴an=6n-5,n∈N*.
(2)由(1)得bn=
=
=
(
-
),
∴Tn=
(1-
+
-
+
-
+…+
-
)
=
-
<
,
∴使得Tn<
对所有n∈N*都成立的最小正整数m必须且仅须满足
≤
,
即m≥10,∴满足要求的最小整数m=10.
点(n,Sn)(n∈N*)均在函数y=f(x)的图象上,
∴Sn=3n2-2n,
当n≥2时,an=Sn-Sn-1=(3n2-2n)-[3(n-1)2-2(n-1)]=6n-5,
当n=1时,a1=S1=3-2=1,满足上式,
∴an=6n-5,n∈N*.
(2)由(1)得bn=
| 3 |
| anan+1 |
| 3 |
| (6n-5)(6n+1) |
| 1 |
| 2 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
∴Tn=
| 1 |
| 2 |
| 1 |
| 7 |
| 1 |
| 7 |
| 1 |
| 13 |
| 1 |
| 13 |
| 1 |
| 19 |
| 1 |
| 6n-5 |
| 1 |
| 6n+1 |
=
| 1 |
| 2 |
| 1 |
| 2(6n+1) |
| 1 |
| 2 |
∴使得Tn<
| m |
| 20 |
| 1 |
| 2 |
| m |
| 20 |
即m≥10,∴满足要求的最小整数m=10.
点评:本题考查数列的前n项和的求法,考查满足要求的最小整数n的求法,是中档题,解题时要注意裂项求和法的合理运用.
练习册系列答案
相关题目
若
=(1,2),
=(-1,1),
=(2,1),k
+
与
共线,则k的值为( )
| a |
| b |
| c |
| a |
| b |
| c |
| A、2 | B、1 | C、0 | D、-1 |