题目内容
20.已知x6(x+3)4=a10(x+1)10+a9(x+1)9+a8(x+1)8+…a1(x+1)+a0,则9a9+7a7+5a5+3a3+a1=( )| A. | 64 | B. | 32 | C. | -64 | D. | -32 |
分析 对x6(x+3)4=a10(x+1)10+a9(x+1)9+a8(x+1)8+…+a1(x+1)+a0两边求导数,
利用赋值法,令x=0和x=-2,即可求出9a9+7a7+5a5+3a3+a1的值.
解答 解:对x6(x+3)4=a10(x+1)10+a9(x+1)9+a8(x+1)8+…+a1(x+1)+a0两边求导数,
得6x5(x+3)4+4x6(x+3)3=10a10(x+1)9+9a9(x+1)8+8a8(x+1)7+…+a1,
令x=0,得0=10a10+9a9+8a8+…+a1①,
令x=-2,得6×(-2)5+4×(-2)6=-10a10+9a9-8a8+…+a1②,
①+②得,64=2(9a9+7a7+5a5+3a3+a1),
所以9a9+7a7+5a5+3a3+a1=32.
故选:B.
点评 本题考查了求二项式展开式的有关系数的应用问题,解题的关键是给变量赋值,是基础题目.
练习册系列答案
相关题目
11.某学校课题组为了研究学生的数学成绩和物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(百分制)如表所示:
若数学成绩90分(含90分)以上为优秀,物理成绩85(含85分)以上为优秀.有多少把握认为学生的数学成绩与物理成绩之间有关系( )
| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
| 物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
| A. | 99.5% | B. | 99.9% | C. | 97.5% | D. | 95% |
5.已知函数f(x)=|2x-2|,方程f2(x)+tf(x)+1=0,(t∈R)有3个不同的实数根,则t的取值范围为( )
| A. | (-∞,-$\frac{5}{2}$] | B. | (-∞,-2] | C. | [-$\frac{5}{2}$,-2] | D. | [-2,+∞) |