题目内容
16.某几何体的三视图如图所示,则该几何体的体积为( )| A. | $\frac{8}{3}$ | B. | $\frac{4}{3}$ | C. | $\frac{{8\sqrt{2}}}{3}$ | D. | $\frac{{4\sqrt{2}}}{3}$ |
分析 由三视图可知,该几何体是底面为边长为2的正方形,一条侧棱垂直底面的四棱锥,高为2,由体积公式计算体积即可.
解答 解:由三视图可知,该几何体是底面为边长为2的正方形,一条侧棱垂直底面的四棱锥,
高为2,故其体积V=$\frac{1}{3}×2×2×2=\frac{8}{3}$,
故选:A
点评 本题考查了空间几何体的三视图的应用问题,解题时应根据三视图,得出该几何体是什么图形,从而解答问题,是基础题.
练习册系列答案
相关题目
20.设复数z=$\frac{1-i}{1+i}$,其中i为虚数单位,则|z|=( )
| A. | 1 | B. | $\sqrt{2}$ | C. | 2 | D. | 3 |
4.设函数y=f(x)在x=x0处取得极小值,则必有( )
| A. | f′(x0)=0 | B. | f″(x0)>0 | ||
| C. | f′(x0)=0且f″(x0)>0 | D. | f′(x0)=0或f′(x0)不存在 |
8.若有一个线性回归方程为 $\stackrel{∧}{y}$=-2.5x+3,则变量x增加一个单位时( )
| A. | y平均减少2.5个单位 | B. | y平均减少0.5个单位 | ||
| C. | y平均增加2.5个单位 | D. | y平均增加0.5个单位 |
5.下列说法中正确的是( )
| A. | 一个命题的逆命题为真,则它的逆否命题一定为真 | |
| B. | 若“ac2>bc2”,则a>b | |
| C. | ?x0∈R,$sin{x_0}+cos{x_0}=\frac{3}{2}$ | |
| D. | “a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0” |
6.
若a>0,b>0,则称$\frac{2ab}{a+b}$为a,b的调和平均数.如图,点C为线段AB上的点,且AC=a,BC=b,点O为线段AB中点,以AB为直径做半圆,过点C作AB的垂线交半圆于D,连结OD,AD,BD.过点C作OD的垂线,垂足为E,则图中线段OD的长度是a,b的算术平均数,那么图中表示a,b的几何平均数与调和平均数的线段,以及由此得到的不等关系分别是( )
| A. | $CD,CE,\frac{2ab}{a+b}≥\sqrt{ab}$ | B. | $CD,DE,\frac{2ab}{a+b}≤\sqrt{ab}$ | C. | $CD,CE,\frac{2ab}{a+b}≥\sqrt{ab}$ | D. | $CD,CE,\frac{2ab}{a+b}≤\sqrt{ab}$ |