题目内容
14.已知等差数列{an}中,a4=9,则前7项和S7=63.分析 等差数列{an}中,前7项和S7=$\frac{7}{2}({a}_{1}+{a}_{7})$=7a4,由此能求出结果.
解答 解:∵等差数列{an}中,a4=9,
∴前7项和S7=$\frac{7}{2}({a}_{1}+{a}_{7})$=7a4=7×9=63.
故答案为:63.
点评 本题考查等差数列的前7项和的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.
练习册系列答案
相关题目
9.设集合U={0,1,2,3,4,5},M={1,4,5},N={0,3,5},则M∩(∁UN)=( )
| A. | {1} | B. | {1,4} | C. | {1,4,5} | D. | {1,2,4,5} |
19.设函数f(x)的=x+$\frac{a}{x}$图象过点A(2,$\frac{5}{2}$).
(I)求实数a的值,并证明f(x)的图象关于原点对称;
(Ⅱ)证明函数f(x)在(0,1)上是减函数.
(I)求实数a的值,并证明f(x)的图象关于原点对称;
(Ⅱ)证明函数f(x)在(0,1)上是减函数.
6.设变量x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≥2\\ y≥-1\end{array}\right.$,则目标函数z=2x+y( )
| A. | 有最小值-3,最大值5 | B. | 有最小值3,无最大值 | ||
| C. | 有最大值5,无最小值 | D. | 既无最小值,也无最大值 |
3.等差数列{an}中的a3,a2017分别是函数f(x)=x3-6x2+4x-1的两个不同极值点,则${log_{\frac{1}{4}}}{a_{1010}}$为( )
| A. | $\frac{1}{2}$ | B. | 2 | C. | -2 | D. | -$\frac{1}{2}$ |