题目内容

已知数列{An}:a1,a2,a3,…,an(n∈N*,n≥2)满足a1=an=0,且当2≤k≤n(k∈N)时,(ak-ak-12=1,记S(An)=
n
i=1
ai
(Ⅰ)写出S(A5)的所有可能的值;      
(Ⅱ)求S(An)的最大值.
考点:数列递推式
专题:点列、递归数列与数学归纳法
分析:(Ⅰ)根据条件,利用列举法即可写出S(A3)的所有可能的值;      
(Ⅱ)利用数列的递推关系,求出S(An)的表达式,即可求出S(An)的最大值.
解答: 解:(Ⅰ)由满足条件的数列A5的所有可能情况有:0,1,2,1,0.; 0,1,0,1,0.;0,1,0,-1,0.;0,-1,-2,-1,0.0,-1,0,1,0.;0,-1,0,-1,0.
∴S(A5)的所有可能的值为:4,2,0,-2,-4.
(Ⅱ)由(ak-ak-1)2=1,可设ak-ak-1=ck-1,则ck-1=1或ck-1=-1(2≤k≤n,k∈N*),
∵an-an-1=cn-1
∴an=an-1+cn-1=an-2+cn-2+cn-1=…=a1+c1+c2+…+cn-2+cn-1
∵a1=an=0,∴c1+c2+…+cn-1=0,且n为奇数,c1,c2,…,cn-1是由  
n-1
2
个1和
n-1
2
个-1构成的数列.
∴S(An)=c1+(c1+c2)+…+(c1+c2+…+cn-1)=(n-1)c1+(n-2)c2+…+2cn-2+cn-1
则当c1,c2,…,cn-1的前
n-1
2
项取1,后
n-1
2
项取-1时S(An)最大,
此时S(An)=(n-1)+(n-2)+…+
n+1
2
-(
n-1
2
+…+2+1)
=
(n-1)2
4

证明如下:假设c1,c2,…,cn-1的前
n-1
2
项中恰有t项cm1cm2,…cmt取-1,
则c1,c2,…,cn-1的后
n-1
2
项中恰有t项cn1cn2,…,cnt取1,其中1≤t≤
n-1
2
1≤mi
n-1
2
n-1
2
ni≤n-1
,i=1,2,…,t.
∴S(An)=(n-1)c1+(n-2)c2+…+
n+1
2
c
n-1
2
+
n-1
2
c
n+1
2
+…+2cn-2+cn-1

=(n-1)+(n-2)+…+
n+1
2
-(
n-1
2
+…+2+1)
-2[(n-m1)+(n-m2)+…+(n-mt)]+2[(n-n1)+(n-n2)+…+(n-nt)]
=
(n-1)2
4
-2
t
i=1
(ni-mi)<
(n-1)2
4

∴S(An)的最大值为
(n-1)2
4
点评:本题主要考查数列的最值的求解,利用递推数列求出数列的通项公式是解决本题的关键,综合性较强,运算量较大,难度较大.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网