题目内容
7.计算:$\underset{lim}{n→∞}$($\sqrt{{n}^{2}+n}$-$\sqrt{{n}^{2}-1}$)=$\frac{1}{2}$.分析 通过分子有理化,然后利用数列的极限求解即可.
解答 解:$\underset{lim}{n→∞}$($\sqrt{{n}^{2}+n}$-$\sqrt{{n}^{2}-1}$)
=$\lim_{n→∞}\frac{(\sqrt{{n}^{2}+n}-\sqrt{{n}^{2}-1})(\sqrt{{n}^{2}+n}+\sqrt{{n}^{2}-1})}{\sqrt{{n}^{2}+n}+\sqrt{{n}^{2}-1}}$
=$\lim_{n→∞}\frac{n+1}{\sqrt{{n}^{2}+n}+\sqrt{{n}^{2}-1}}$
=$\lim_{n→∞}\frac{1+\frac{1}{n}}{\sqrt{1+\frac{1}{n}}+\sqrt{1-\frac{1}{{n}^{2}}}}$
=$\frac{1}{2}$.
故答案为:$\frac{1}{2}$.
点评 本题考查数列的极限,极限的运算法则的应用,考查计算能力.
练习册系列答案
相关题目
18.已知椭圆的焦点为F1(0,-1)和F2(0,1),点P($\frac{2\sqrt{5}}{5}$,2)在椭圆上,则椭圆的短轴长为( )
| A. | 2 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 6 |
12.cos40°cos160°+sin40°sin20°=( )
| A. | -$\frac{\sqrt{3}}{2}$ | B. | -$\frac{1}{2}$ | C. | $\frac{1}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |