题目内容

18.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$,其中|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}+\overrightarrow{b}$)⊥$\overrightarrow{a}$,则|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{21}$.

分析 根据平面向量的数量积定义与模长公式,计算即可.

解答 解:∵|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=2,且($\overrightarrow{a}+\overrightarrow{b}$)⊥$\overrightarrow{a}$,
∴($\overrightarrow{a}$+$\overrightarrow{b}$)•$\overrightarrow{a}$=${\overrightarrow{a}}^{2}$+$\overrightarrow{a}$•$\overrightarrow{b}$=0,
∴$\overrightarrow{a}$•$\overrightarrow{b}$=-${\overrightarrow{a}}^{2}$=-1,
∴${(\overrightarrow{a}-2\overrightarrow{b})}^{2}$=${\overrightarrow{a}}^{2}$-4$\overrightarrow{a}$•$\overrightarrow{b}$+4${\overrightarrow{b}}^{2}$=12-4×(-1)+4×22=21,
∴|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{21}$.
故答案为:$\sqrt{21}$.

点评 本题考查了平面向量的数量积运算与模长公式的应用问题,是基础题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网